Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:26:01.447Z Has data issue: false hasContentIssue false

Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island

Published online by Cambridge University Press:  20 August 2010

Eduardo de Sá Mendonça
Affiliation:
Department of Plant Production, Federal University of Espírito Santo, 29500-000, Alegre, ES, Brazil Advisor at the Soil and Plant Nutrition Post-graduation Program, Federal University of Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil
Newton La Scala Jr*
Affiliation:
FCAV, Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, SP, Brazil
Alan Rodrigo Panosso
Affiliation:
FCAV, Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, SP, Brazil
Felipe N.B. Simas
Affiliation:
Soil Science Department, Federal University of Viçosa, Av. PH Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil
Carlos E.G.R. Schaefer
Affiliation:
Soil Science Department, Federal University of Viçosa, Av. PH Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil
*
*corresponding author: [email protected]

Abstract

Soil CO2 emission is an important part of the terrestrial carbon cycling and is influenced by several factors, such as type and distribution of vegetation. In this work we evaluated the spatial variability of soil CO2 emission in terrestrial ecosystems of maritime Antarctica, under two contrasting vegetation covers: 1) grass areas of Deschampsia antarctica Desv., and 2) moss carpets of Sanionia uncinata (Hedw.) Loeske. Highest mean emission was obtained for the Deschampsia (4.13 μmol m-2 s-1) developed on organic-rich soil with a strong penguin influence. The overall results indicate that soil temperature is not directly related to the spatial pattern of soil CO2 emission at the sites studied. Emission adjusted models were Gaussian and exponential with ranges varying from 1.3 to 2.8 m, depending on the studied site and vegetation cover.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, B.A., Virginia, R.A., Barrett, J.E., Parsons, A.N. Wall, D.H. 2009. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils. Soil Biology & Biochemistry, 41, 15101517.CrossRefGoogle Scholar
Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 15011511.CrossRefGoogle Scholar
Convey, P. 2006. Antarctic climate change and its influences on terrestrial ecosystems. In Bergstrom, D.M., Convey, P. & Huiskes, A.H.L., eds. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Dordrecht: Springer, 253272.CrossRefGoogle Scholar
Convey, P., Bindschadler, R., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A., Summerhayes, C.P., Turner, J. & the ACCE Consortium 2009. Antarctic climate change and the environment. Antarctic Science, 21, 541563.CrossRefGoogle Scholar
Dasselaar, A.V.P.V., Corré, W.J., Priemé, A., Klemedtsson, Å.K., Weslien, P., Stein, A., Klemedtsson, L. Oenema, O. 1998. Spatial variability of methane, nitrous oxide and carbon dioxide emissions from drained grassland. Soil Science Society of America Journal, 62, 810817.CrossRefGoogle Scholar
Davidson, E.A. Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165173.CrossRefGoogle ScholarPubMed
Day, T.A., Ruhland, C.T., Grobe, C.W. Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV-B radiation reductions in the field. Oecologia, 119, 2435.CrossRefGoogle ScholarPubMed
Epron, D., Nouvellon, Y., Roupsard, O., Mouvondy, W., Mabiala, A., Saint-André, L., Joffre, R., Jourdan, C., Bonnefond, J., Berbigier, P. Hamel, O. 2004. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. Forest Ecology and Management, 202, 149160.CrossRefGoogle Scholar
Fang, C., Moncrieff, J.B., Gholz, H.L. Clark, K.L. 1998. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 135146.CrossRefGoogle Scholar
Grobe, C.W., Ruhland, C.T. Day, T.A. 1997. A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arctic and Alpine Research, 29, 217221.CrossRefGoogle Scholar
Hopkins, D.W., Sparrow, A.D., Elberling, B., Gregorich, E.G., Novis, P.M., Greenfield, L.G. Tilston, E.L. 2006. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 38, 31303140.CrossRefGoogle Scholar
Isaaks, E.H. Srivastava, R.M. 1989. An introduction to applied geostatistics. New York: Oxford University Press, 592 pp.Google Scholar
Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H. Muriyarso, D. 2005. Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 71, 5562.CrossRefGoogle Scholar
Konda, R., Ohta, S., Ishizuka, S., Aria, S., Ansori, S., Tanaka, N. Hardjono, A. 2008. Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biology and Biochemistry, 40, 30213030.CrossRefGoogle Scholar
Kosugi, Y., Mitani, T., Ltoh, M., Noguchi, S., Tani, M., Matsuo, N., Takanashi, S., Ohkubo, S. Nik, A.R. 2007. Spatial and temporal variation in soil respiration in a southeast Asian tropical rainforest. Agriculture and Forest Meteorology, 147, 3547.CrossRefGoogle Scholar
Kuzyakov, Y. Gavrichkova, O. 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 10.1111/j.1365–2486.2010.02179.x.CrossRefGoogle Scholar
La Scala, N., Marques, J., Pereira, G.T. Corá, J.E. 2000. Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biology & Biochemistry, 32, 14591462.CrossRefGoogle Scholar
Lloyd, C.R. 2001. On the physical controls of the carbon dioxide balance at a high Arctic site in Svalbard. Theoretical and Applied Climatology, 70, 167182.CrossRefGoogle Scholar
Luo, Y.Q., Wan, S.Q., Hui, D.F. Wallace, L.L. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622625.CrossRefGoogle Scholar
Martin, J.G. Bolstad, P.V. 2009. Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biology & Biochemistry, 41, 530543.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Dias, L., Simas, F.N.B., Benites, V. Mendonça, E.S. 2006. Ornithogenic Gelisols (Cryosols) from maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal, 70, 13701376.CrossRefGoogle Scholar
Montiel, P., Smith, A. Keiller, D. 1999. Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Research, 18, 229235.CrossRefGoogle Scholar
Oberbauer, S.F., Tweedie, C.E., Welker, J.M., Fahnestock, J.T., Henry, G.H.R., Webber, P.J., Hollister, R.D., Walker, M.D., Kuchy, A., Elmore, E. Starr, G. 2007. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221238.CrossRefGoogle Scholar
Ohashi, M. Gyokusen, K. 2007. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biology & Biochemistry, 39, 11301138.CrossRefGoogle Scholar
Park, J.H. Day, T.A. 2007. Temperature response of CO2 exchange and dissolved organic carbon release in a maritime Antarctic tundra ecosystem. Polar Biology, 30, 15351544.CrossRefGoogle Scholar
Parnikoza, I., Convey, P., Dykyy, I., Trakhimets, V., Milinevsky, G., Tyschenko, O., Inozemtseva, D. Kozeretska, I. 2009. Current status of the Antarctic herb tundra formation in the central Argentine Islands. Global Change Biology, 15, 16851693.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C. Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle ScholarPubMed
Rayment, M.B. Jarvis, P.G. 2000. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology & Biochemistry, 32, 3545.CrossRefGoogle Scholar
Rochette, P., Desjardins, R.L. Pattey, E. 1991. Spatial and temporal variability of soil respiration in agricultural fields. Canadian Journal of Soil Science, 71, 189196.CrossRefGoogle Scholar
Schwendenmann, L., Veldkamp, E., Brenes, T., O’Brien, J.J. Mackensen, J. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 64, 111128.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Guerra, M.B.B., Saunders, M. Gilkes, R.J. 2006. Clay-sized minerals in permafrost-affected soils (Cryosols) from King George Island, Antarctica. Clays and Clay Minerals, 54, 723738.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Mendonça, E.S., Silva, I.R., Santana, R.M. Ribeiro, A.S.S. 2007b. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica. In Cooper, A.K. & Raymond, C.R., eds. Antarctica: a keystone in a changing world – Online Proceedings of the 10th ISAES X. USGS Open-File Report 2007–1047, Research Paper 076, 10.3133/of2007-1047.srp076, 4 ppCrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., Gomes, M.R.M. Costa, L.M. 2007a. Ornithogenic Cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 191203.CrossRefGoogle Scholar
Smith, R.I.L. 1994. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia, 99, 322328.CrossRefGoogle ScholarPubMed
Smith, V.R. 2003. Soil respiration and its determinants on a sub-Antarctic island. Soil Biology & Biochemistry, 35, 7791.CrossRefGoogle Scholar
Smith, V.R. 2005. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil Biology & Biochemistry, 37, 8191.CrossRefGoogle Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459463.CrossRefGoogle ScholarPubMed
Stoyan, H., De-Polli, H., Böhm, S., Robertson, G.P. Paul, E.A. 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil, 222, 203214.CrossRefGoogle Scholar
Tang, J. Baldocchi, D.B. 2005. Spatial-temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183207.CrossRefGoogle Scholar
Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P.L. Borghetti, M. 2006. Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Global Change Biology, 12, 110121.CrossRefGoogle Scholar
Trangmar, B.B., Yost, R.S. Uehara, G. 1985. Application of geostatistics to spatial studies of soil propweerties. Advances in Agronomics, 38, 4594.CrossRefGoogle Scholar
Turner, J., Colwell, S.R. Harangozo, S. 1997. Variability in precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research, 102, 13 99914 007.CrossRefGoogle Scholar
Ugolini, F.C. 1972. Ornithogenic soils of Antarctica. Antarctic Research Series, 20, 181193.CrossRefGoogle Scholar
Vaughan, D.G., Marchall, G.J., Connolley, W.M., King, J.C. Mulvaney, R. 2001. Devil in the detail. Science, 293, 17771779.CrossRefGoogle ScholarPubMed
Webster, R. Oliver, M.A. 1990. Statistical methods in soil and land resource survey. Oxford: Oxford University Press, 316 pp.Google Scholar
Welker, J.M., Fahnestock, J.T. Jones, M.H. 2000. Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Climatic Change, 44, 139150.CrossRefGoogle Scholar
Xu, M. Qi, Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667677.CrossRefGoogle Scholar