Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:37:57.135Z Has data issue: false hasContentIssue false

Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact

Published online by Cambridge University Press:  09 February 2009

P. Tejedo
Affiliation:
School of Biology, IE University, Segovia, 40003, Spain
A. Justel
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
J. Benayas*
Affiliation:
Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
E. Rico
Affiliation:
Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
P. Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
A. Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
*
*Corresponding author: [email protected]

Abstract

Research in extremely delicate environments must be sensitive to the need to minimize impacts caused simply through the presence of research personnel. This study investigates the effectiveness of current advice relating to travel on foot over Antarctic vegetation-free soils. These are based on the concentration of impacts through the creation of properly signed and identified paths. In order to address these impacts, we quantified three factors - resistance to compression, bulk density and free-living terrestrial arthropod abundance - in areas of human activity over five summer field seasons at the Byers Peninsula (Livingston Island, South Shetland Islands). Studies included instances of both experimentally controlled use and natural non-controlled situations. The data demonstrate that a minimum human presence is sufficient to alter both physical and biological characteristics of Byers Peninsula soils, although at the lowest levels of human activity this difference was not significant in comparison with adjacent undisturbed control areas. On the other hand, a limited resilience of physical properties was observed in Antarctic soils, thus it is crucial not to exceed the soil's natural recovery capability.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benayas, J., Tejedo, P., García, D. & Muñoz, M. 2007. Perspectivas actuales y retos futuros en la gestión de las actividades de Uso Público en la Naturaleza. In Boada, M. & Benayas, J., eds. Naturaleza y uso público: movilidad, impactos y propuestas. Barcelona: Fundación Abertis, 3748.Google Scholar
Beyer, L. & Bölter, M. 2002. Geoecology of Antarctic ice-free coastal landscapes. Berlin: Springer, 463 pp.Google Scholar
Blake, G.R. & Hartge, K.H. 1986. Bulk density. In Klute, A., ed. Methods of soil analysis. Part 1: Physical and mineralogical methods, 2nd ed.Madison, WI: Soil Science Society of America, 363376.Google Scholar
Block, W. & Starý, J. 1996. Oribatid mites (Acari: Oribatida) of the maritime Antarctic and Antarctic Peninsula. Journal of Natural History, 30, 10591067.Google Scholar
Blume, H.P., Khun, D. & Bölter, M. 2002. Soils and landscapes. In Beyer, L. & Bölter, M., eds. Geoecology of Antarctic ice free coastal landscapes. Berlin: Springer, 91114.Google Scholar
Bonner, W. & Lewis Smith, R.I. 1985. SSSI No 6: Byers Peninsula, Livingston Island, South Shetland Islands. In Bonner, W.N. & Lewis Smith, R.I., eds. Conservation areas in the Antarctic. Cambridge: SCAR, 147156.Google Scholar
Brady, N. 2001. The nature and properties of soils, 13th ed.Upper Saddle River, NJ: Prentice Hall, 960 pp.Google Scholar
Campbell, I.B. & Claridge, G.G.C. 1987. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier Science Publishers, 406 pp.Google Scholar
Campbell, I.B., Balks, M.R. & Claridge, G.G.C. 1993. A simple visual technique for estimating the effect of fieldwork on the terrestrial environment in ice-free areas of Antarctica. Polar Record, 29, 321328.Google Scholar
Campbell, I.B., Claridge, G.G.C., Campbell, D.I. & Balks, M.R. 1998. The soil environment. Antarctic Research Series, 72, 297322.Google Scholar
Convey, P. 1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191225.Google Scholar
Convey, P., Greenslade, P., Richard, K.J. & Block, W. 1996. The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands. Polar Biology, 16, 257259.Google Scholar
Davis, R.C. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecological Monographs, 5, 125143.CrossRefGoogle Scholar
Fox, A.J. & Cooper, P.R. 1994. Measured properties of the Antarctic Ice Sheet derived from the SCAR digital database. Polar Record, 30, 201204.Google Scholar
Hall, C.M. & Johnston, M.E., eds. 1995. Polar tourism: tourism in the Arctic and Antarctic regions. Chichester: John Wiley, 346 pp.Google Scholar
Hogg, I.D. & Stevens, M.I. 2002. Soil fauna of Antarctic coastal landscapes. In Beyer, L. & Bölter, M., eds. Geoecology of Antarctic ice-free coastal landscapes. Berlin: Springer, 265282.CrossRefGoogle Scholar
Hogg, I.D., Cary, C., Convey, P., Newsham, K.K., O'donnell, A.G., Adams, B.J., Aislabie, J., Frati, F., Stevens, M.I. & Wall, D.H. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology and Biochemistry, 38, 30353040.Google Scholar
Jorajuria, D. 2004. La resistencia a la penetración como parámetro mecánico del suelo. In Filgueira, R. & Micucci, F., eds. Metodologías físicas para la evaluación del suelo: penetrometría e infiltrometría. EDULP, 4353.Google Scholar
Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research, 25, 308315.CrossRefGoogle Scholar
Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J.J, Serrano, E., Cuchi, J.A. & Mink, S. 2006. Características de los suelos sobre diferentes sustratos en las Islas Shetland del Sur. El caso de la Isla Livingston. Libro de resúmenes del VII Simposio Español de Estudios Polares. Granada, 18-20 de septiembre, 226228.Google Scholar
NSF/COMNAP/SCAR. 2005. Practical biological indicators of human impacts in Antarctica. Bryan, College Station, Texas, 16–18 March 2005. Workshop Report, vol. 1, 24 pp.Google Scholar
Richard, K.J., Convey, P. & Block, W. 1994. The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands. Polar Biology, 14, 371379.CrossRefGoogle Scholar
Serrano, E. 2001. Protected areas and territorial politicy in South Shetland Islands (Antarctica). AGE Bulletin, 31, 521.Google Scholar
Serrano, E. 2002. Ice, mountains, sea and fauna: tourism in South Shetland Islands (maritime Antarctic). Revue de Géographie Alpine, 1, 924.Google Scholar
Serrano, E. 2003. Natural landscape and geoecological belts on ice free areas of the maritime Antarctica (South Shetland Island). AGE Bulletin, 35, 532.Google Scholar
Soil Survey Staff. 2006. Keys to soil taxonomy, 10th ed.Washington, DC: USDA-Natural Resources Conservation Service, 332 pp.Google Scholar
Smith, R.C., Baker, K.S., Fraser, W.R., Hoffman, E.E., Karl, D.M., Klinck, J.M., Quetin, L.B., Prézelin, B.B., Ross, R.M., Trivelpiece, W.Z. & Vernet, M. 1995. The Palmer LTR: a long-term ecological research program at palmer Station, Antarctica. Oceanography, 8, 7786.Google Scholar
Tejedo, P., Justel, A., Rico, E., Benayas, J. & Quesada, A. 2005. Measuring impacts on soils by human activity in an Antarctic Special Protected Area. Terra Antarctica Reports, 12, 5762.Google Scholar
Tilbrook, P.J. 1967. Arthropod ecology in the maritime Antarctic. Antarctic Research Series, 10, 331356.Google Scholar
Usher, M.B. & Edwards, M. 1986. The selection of conservation areas in Antarctica: an example using the arthropod fauna of Antarctic islands. Environmental Conservation, 13, 115122.CrossRefGoogle Scholar