Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T16:56:55.892Z Has data issue: false hasContentIssue false

Soil nitrogen transformations on a subantarctic island

Published online by Cambridge University Press:  13 May 2004

V. R. Smith
Affiliation:
Department of Botany and Genetics, University of the Orange Free State Bloemfontein, 9301, South Africa
Marianna Steenkamp
Affiliation:
Department of Botany and Genetics, University of the Orange Free State Bloemfontein, 9301, South Africa

Abstract

The vascular vegetation of a mire-grassland community on Marion Island (47°S, 38°E) takes up c. 158 mg N m−2 d−1 in summer. Bryophytes take up c. 36 mg N m−2 d−1 during their peak growth period. Since inputs of N through precipitation and biological fixation are negligible, mineralization of organic N must have supplied the bulk of this N. From changes in peat inorganic N levels and rates of uptake by the vegetation we estimate mean mineralization rates of 178 mg N m−2 d−1 in summer and 55 mg N m−2d−1 in winter. In situ incubationof peat give a maximum mineralization rate of 48 mg N m−2 d−1. At this rate the small (700 mg m−2) pool of available N in the upper 25 cm of peat would be depleted by the vascular vegetation in about seven days and bryophytes would deplete the available N pool in the top 25 mm in two days. Hence the rate of N mineralization measured by incubation is much too low to account for the fluctuations in concentrations of inorganic N in the peat and the amounts taken up by the vegetation. This may be due to losses through denitrification or to the fact that soil macroinvertebrates were excluded from the incubation.

Type
Papers—Life Sciences and Oceanography
Copyright
© Antarctic Science Ltd 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)