Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T14:14:28.485Z Has data issue: false hasContentIssue false

Short timescale dynamics of phytoplankton in Fildes Bay, Antarctica

Published online by Cambridge University Press:  31 January 2017

Claudia Egas
Affiliation:
Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
Carlos Henríquez-Castillo
Affiliation:
Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile Laboratorio de Oceanografía Microbiana, Departamento de Oceanografía, Universidad de Concepción, PO Box 160-C, Concepción, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
Nathalie Delherbe
Affiliation:
Laboratorio de Oceanografía Microbiana, Departamento de Oceanografía, Universidad de Concepción, PO Box 160-C, Concepción, Chile
Ernesto Molina
Affiliation:
Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
Adriana Lopes Dos Santos
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique, Place Georges Teissier 29680, Roscoff, France
Paris Lavin
Affiliation:
Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
Rodrigo De La Iglesia
Affiliation:
Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
Daniel Vaulot
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique, Place Georges Teissier 29680, Roscoff, France
Nicole Trefault*
Affiliation:
Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile

Abstract

Phytoplankton is responsible for most primary production in Antarctica, but the short timescale dynamics of its size structure and composition are poorly described and understood. The abundance and composition of phytoplankton in Fildes Bay, western Antarctic Peninsula, was followed for 12 days during the summer using a range of methods, including size fractionation of chlorophyll, microscopy, flow cytometry and terminal-restriction fragment length polymorphism (T-RFLP) of the plastid 16S rRNA gene. A rapid increase in biomass and cell abundance occurred in response to a vertical mixing event. This increase also resulted in a shift in composition from diatoms to Prymnesiophyceae, and then back to diatoms as the water column re-stratified. Our results show a strong dominance of nanophytoplankton represented by Thalassiosira and Phaeocystis. The rapid response of the phytoplankton suggests that it is well adapted to short-term environmental changes.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agawin, N.S.R., Agustí, S. & Duarte, C.M. 2002. Abundance of Antarctic picophytoplankton and their response to light and nutrient manipulation. Aquatic Microbial Ecology, 29, 161172.Google Scholar
Arrigo, K.R., Worthen, D., Schnell, A. & Lizotte, M.P. 1998. Primary production in Southern Ocean waters. Journal of Geophysical Research - Oceans, 103, 10.1029/98JC00930.Google Scholar
Arrigo, K.R., DiTullio, G.R., Dunbar, R.B., Robinson, D.H., VanWoert, M., Worthen, D.L. & Lizotte, M.P. 2000. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research - Oceans, 105, 10.1029/1998JC000289.Google Scholar
Baldwin, A.J., Moss, J.A., Pakulski, J.D., Catala, P., Joux, F. & Jeffrey, W.H. 2005. Microbial diversity in a Pacific Ocean transect from the Arctic to Antarctic circles. Aquatic Microbial Ecology, 41, 91102.Google Scholar
Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C.E., Bowie, A.R., Buesseler, K.O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.T., Mckay, R.M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A. & Zeldis, J. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695702.Google Scholar
Cachon, M. & Caram, B. 1979. A symbiotic green alga, Pedinomonas symbiotica sp. nov. (Prasinophyceae), in the radiolarian Thalassolampe margarodes . Phycologia, 18, 177184.Google Scholar
Chang, K.I., Jun, H.K., Park, G.T. & Eo, Y.S. 1990. Oceanographic conditions of Maxwell Bay, King George Island, Antarctica (austral summer 1989). Korean Journal of Polar Research, 1, 2746.Google Scholar
Clarke, A., Meredith, M.P., Wallace, M.I., Brandon, M.A. & Thomas, D.N. 2008. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep-Sea Research II - Topical Studies in Oceanography, 55, 19882006.Google Scholar
Collado-Fabbri, S., Vaulot, D. & Ulloa, O. 2011. Structure and seasonal dynamics of the eukaryotic picophytoplankton community in a wind-driven coastal upwelling ecosystem. Limnology and Oceanography, 56, 23342346.Google Scholar
Decelle, J., Romac, S., Stern, R.F., Bendif, E.M., Zingone, A., Audic, S., Guiry, M.D., Guillou, L., Tessier, D., Le Gall, F., Gourvil, P., Dos Santos, A.L., Probert, I., Vaulot, D, de Vargas, C. & Christen, R. 2015. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Molecular Ecology Resources, 15, 14351445.Google Scholar
Díez, B., Massana, R., Estrada, M. & Pedrós-Alió, C. 2004. Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. Limnology and Oceanography, 49, 10221034.Google Scholar
Fuller, N.J., Campbell, C., Allen, D., Pitt, F.D., Zwirglmaier, K., Le Gall, F., Vaulot, D. & Scanlan, D.J. 2006. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquatic Microbial Ecology, 43, 7993.Google Scholar
Garibotti, I.A., Vernet, M. & Ferrario, M.E. 2005. Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep-Sea Research I - Oceanographic Research Papers, 52, 18231841.Google Scholar
Garibotti, I.A., Vernet, M., Ferrairo, M.E., Smith, R.C., Ross, R.M. & Quetin, L.B. 2003. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261, 2139.Google Scholar
Gonçalves-Araujo, R., de Souza, M.S., Tavano, V.M. & García, C.A. 2015. Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. Journal of Marine Systems, 142, 115.Google Scholar
Hasle, G.R. 1978. The inverted-microscope method. In Sournia, A., ed. Phytoplankton manual. Monographs on oceanographic methodology. Paris: UNESCO, 10 pp.Google Scholar
Henríquez‐Castillo, C., Rodríguez‐Marconi, S., Rubio, F., Trefault, N., Andrade, S. & De la Iglesia, R. 2015. Eukaryotic picophytoplankton community response to copper enrichment in a metal‐perturbed coastal environment. Phycological Research, 63, 189196.CrossRefGoogle Scholar
Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W. & Strickland, J.D.H. 1965. Fluorometric determination of chlorophyll. Journal Conseil International pour l’Exploration de la Mer, 30, 315.Google Scholar
Kropuenske, L.R., Mills, M.M., van Dijken, G.L., Bailey, S., Robinson, D.H., Welschmeyer, N.A. & Arrigo, K.R. 2009. Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus . Limnology and Oceanography, 54, 10.4319/lo.2009.54.4.1176.Google Scholar
Lee, S.H., Joo, H.M., Joo, H., Kim, B.K., Song, H.J., Jeon, M. & Kang, S.H. 2015. Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008. Polar Biology, 38, 207220.Google Scholar
Luo, W., Li, H.R., Gao, S.Q., Yu, Y., Lin, L. & Zeng, Y.X. 2015. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biology, 39, 10.1007/s00300-015-1815-8.Google Scholar
Marañon, E., Cermeño, P., Latasa, M. & Tadonléké, R.D. 2012. Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography, 57, 12661278.CrossRefGoogle Scholar
Marchant, H.J. 1993. Antarctic marine nanoplankton. In Menon, J., ed. Current topics in botanical research. Trivandrum: Council of Scientific Integration, 189201.Google Scholar
Mendes, C.R.B., Tavano, V.M., Leal, M.C., de Souza, M.S., Brotas, V. & García, C.A.E. 2013. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biology, 36, 537547.Google Scholar
Moline, M.A., Prezelin, B.B. & Schofield, O. 1997. Palmer LTER: stable interannual successional patterns of phytoplankton communities in the coastal waters off Palmer Station, Antarctica. Antarctic Journal of the United States, 32, 151153.Google Scholar
Montes-Hugo, M.A., Vernet, M., Martinson, D., Smith, R. & Iannuzzi, R. 2008. Variability on phytoplankton size structure in the western Antarctic Peninsula (1997–2006). Deep-Sea Research II - Topical Studies in Oceanography, 55, 21062117.Google Scholar
Montes-Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E. & Schofield, O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323, 14701473.Google Scholar
Moreno-Pino, M., De la Iglesia, R., Valdivia, N., Henríquez-Castillo, C., Galán, A., Díez, B. & Trefault, N. 2016. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering? FEMS Microbiology Ecology, 92, 10.1093/femsec/fiw088.CrossRefGoogle ScholarPubMed
Pearson, G.A., Lago-Leston, A., Cánovas, F., Cox, C.J., Verret, F., Lasternas, S., Duarte, C.M., Agustí, S. & Serrão, E.A. 2015. Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME Journal, 9, 22752289.Google Scholar
Piquet, A.M.T., Bolhuis, H., Meredith, M.P. & Buma, A.G.J. 2011. Shifts in coastal Antarctic marine microbial communities during and after melt water-related surface stratification. FEMS Microbiology Ecology, 76, 413427.Google Scholar
Piquet, A.M.T., Bolhuis, H., Davidson, A.T., Thomson, P.G. & Buma, A.G.J. 2008. Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiology Ecology, 66, 352366.Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O. & Ferreyra, G.A. 2012. Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems, 92, 5366.Google Scholar
Schloss, I.R., Wasilowska, A., Dumont, D., Almandoz, G., Hernando, M.P., Michaud-Tremblay, C.A., Saravia, L., Rzepecki, M., Monien, P., Monien, D., Kopczyńska, E.E., Bers, A.V. & Ferreyra, G.A. 2014. On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature. Limnology and Oceanography, 59, 195210.Google Scholar
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., van Horn, D.J. & Weber, C.F. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 75377541.Google Scholar
Smith, W.O. Jr, Ainley, D.G., Arrigo, K.R. & Dinniman, M.S. 2014. The oceanography and ecology of the Ross Sea. Annual Review of Marine Science, 6, 10.1146/annurev-marine-010213-135114.CrossRefGoogle ScholarPubMed
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R. & Deb, P. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 10.1038/nature18645.CrossRefGoogle ScholarPubMed
Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. 2008. The diversity of small eukaryotic phytoplankton (<3 µm) in marine ecosystems. FEMS Microbiology Reviews, 32, 795820.Google Scholar
Vernet, M., Martinson, D., Iannuzzi, R., Stammerjohn, S., Kozlowski, W., Sines, K., Smith, R. & Garibotti, I. 2008. Primary production within the sea-ice zone west of the Antarctic Peninsula. I Sea ice, summer mixed layer, and irradiance. Deep-Sea Research II - Topical Studies in Oceanography, 55, 20682085.Google Scholar
West, N.J., Schönhuber, W.A., Fuller, N.J., Amann, R.I., Rippka, R., Post, A.F. & Scanlan, D.J. 2001. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology, 147, 17311744.Google Scholar
Whipple, S.J., Patten, B.C. & Verity, P.G. 2005. Life cycle of the marine alga Phaeocystis: a conceptual model to summarize literature and guide research. Journal of Marine Systems, 57, 83110.Google Scholar
Wright, S.W., Ishikawa, A., Marchant, H.J., Davidson, A.T., van den Enden, R.L. & Nash, G.V. 2009. Composition and significance of picophytoplankton in Antarctic waters. Polar Biology, 32, 797808.Google Scholar
Supplementary material: PDF

Egas supplementary material

Tables S1-S3

Download Egas supplementary material(PDF)
PDF 219.3 KB