Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T20:23:30.952Z Has data issue: false hasContentIssue false

Short Note: Micropropagation of Antarctic Colobanthus quitensis

Published online by Cambridge University Press:  17 October 2008

Gustavo E. Zúñiga*
Affiliation:
Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH). Santiago de Chile, Chile
Pablo Zamora
Affiliation:
Programa de Doctorado en Biotecnologia
Marcelo Ortega
Affiliation:
Programa de Doctorado en Biotecnologia
Alberto Obrecht
Affiliation:
Programa de Doctorado en Biotecnologia

Extract

The Antarctic Pearlwort, Colobanthus quitensis (Kunth.) Bartl. (Caryophyllaceae) is one of the two native vascular plant species that have successfully colonized the maritime Antarctic during the Holocene (Smith 1984). Within the Antarctic biome, it is only found on the Antarctic Peninsula and on islands in the maritime Antarctic (Smith 1984). Its distribution also includes South Georgia (sub-Antarctic), the Falkland Islands, and sites along the Andes, reaching c. 10°N in Mexico (Moore 1970). Moore (1970) observed that C. quitensis is self-compatible and appears to be largely, if not entirely, self-pollinated. Convey (1996), found that maritime Antarctic C. quitensis showed lower allocation to seed production than plants from sub-Antarctic sites.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberdi, M., Bravo, L., Gutiérrez, A., Gidekel, M. & Corcuera, L. 2002. Ecophysiology of antarctic vascular plants. Physiologia Plantarum, 115, 479486.CrossRefGoogle ScholarPubMed
Bravo, L.A., Ulloa, N., Zúñiga, G.E., Casanova, A., Corcuera, L.J. & Alberdi, M. 2001. Cold resistance in Antarctic angiosperms. Physiologia Plantarum, 111, 5565.CrossRefGoogle Scholar
Convey, P. 1996. Reproduction of Antarctic flowering plants. Antarctic Science, 8, 127134.CrossRefGoogle Scholar
Day, T.A., Ruhland, C.T., Grobe, C.W. & Xiong, F. 1999. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia, 119, 2435.CrossRefGoogle ScholarPubMed
Edwards, J.A. & Smith, R.I.L. 1988. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from maritime Antarctic. British Antarctic Survey Bulletin, No. 81, 4363.Google Scholar
Moore, D.M. 1970. Studies in Colobanthus quitensis (Kunth) Bartl.and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. British Antarctic Survey Bulletin, No. 23, 6380.Google Scholar
Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473479.CrossRefGoogle Scholar
Smith, R.I.L. 1984. Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws, R.M., ed. Antarctic biology. New York: Academic Press, 61162.Google Scholar
Smith, R.I.L. 1985. Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 138155.CrossRefGoogle Scholar
Smith, R.I.L. 1993. Dry coastal ecosystems of Antarctica. In Van Der Maael, E., ed. Ecosystems of the world, Vol. 2A. Amsterdam: Elsevier, 5171.Google Scholar