Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T16:20:28.125Z Has data issue: false hasContentIssue false

Seeds of non-native species in King George Island soil

Published online by Cambridge University Press:  23 February 2017

Eduardo Fuentes-Lillo
Affiliation:
Laboratorio de Biotecnología y Estudios Ambientales, Escuela de Ciencias y Tecnología, Universidad de Concepción, Campus Los Ángeles. Casilla 341, Juan Antonio Coloma 0201, Los Ángeles, Chile Laboratorio de Palinología y Ecología Vegetal, Escuela de Ciencias y Tecnología, Universidad de Concepción, Campus Los Ángeles. Casilla 341, Juan Antonio Coloma 0201, Los Ángeles, Chile
Marely Cuba-Díaz*
Affiliation:
Laboratorio de Biotecnología y Estudios Ambientales, Escuela de Ciencias y Tecnología, Universidad de Concepción, Campus Los Ángeles. Casilla 341, Juan Antonio Coloma 0201, Los Ángeles, Chile
José M. Troncoso-Castro
Affiliation:
Laboratorio de Palinología y Ecología Vegetal, Escuela de Ciencias y Tecnología, Universidad de Concepción, Campus Los Ángeles. Casilla 341, Juan Antonio Coloma 0201, Los Ángeles, Chile
Mauricio Rondanelli-Reyes
Affiliation:
Laboratorio de Palinología y Ecología Vegetal, Escuela de Ciencias y Tecnología, Universidad de Concepción, Campus Los Ángeles. Casilla 341, Juan Antonio Coloma 0201, Los Ángeles, Chile
*
*corresponding author: [email protected]

Abstract

The Antarctic terrestrial ecosystem is relatively simple and has low plant diversity. Taking into account the current effects of climate change and the exponential increase in visitors during the past 50 years, this ecosystem is very vulnerable to the arrival of non-native species. Fildes Peninsula, King George Island, is an area of high human impact due to the scientific and logistical activities that occur there making the area particularly interesting for the arrival of non-native species. In this study, we determine the spectrum of seeds arriving to the peninsula and being deposited in the topsoil. Soil samples were collected and analysed in order to identify and quantify plant material. The results indicate that there is a direct relationship between the sites where seeds were found and areas with higher levels of human activity on the peninsula. Eight species were identified, with the most common being Hypochaeris radicata and Senecio jacobaea. Seed quantification indicated that areas of high human activity are most vulnerable to the invasion and establishment of non-native species. This study is the first to demonstrate the presence of non-native seeds in the topsoil at Fildes Peninsula, Antarctica.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ATCM (Antarctic Treaty Consultative Meeting). 2015. Final report of the thirty-eighth Antarctic Treaty Consultative Meeting. Available at: www.ats.aq/devAS/info_finalrep.aspx?lang=e.Google Scholar
Cavieres, L.A., Quiroz, C.L., Molina-Montenegro, M.A., Muñoz, A.A. & Pauchard, A. 2005. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspectives in Plant Ecology Evolution and Systematics, 7, 217226.CrossRefGoogle Scholar
Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K.A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., van de Vijver, B. & Bergstrom, D.M. 2012. Continent-wide risk assessment for the establishment of non-indigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 109, 49384943.CrossRefGoogle Scholar
Chwedorzewska, K.J., Korczak-Abshire, M., Olech, M., Lityńska-Zając, M. & Augustyniuk-Kram, M. 2013. Alien invertebrates transported accidentally to the Polish Antarctic station in cargo and on fresh foods. Polish Polar Research, 34, 5566.Google Scholar
Chwedorzewska, K.J., Giełwanowska, I., Olech, M., Molina-Montenegro, M., Wódkiewicz, M. & Galera, H. 2015. Poa annua L. in the Maritime Antarctic: an overview. Polar Record, 51, 637643.Google Scholar
Convey, P. 1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biological Reviews, 71, 191225.Google Scholar
Convey, P., Key, R.S. & Key, R.J.D. 2010. The establishment of a new ecological guild of pollinating insects on sub-Antarctic South Georgia. Antarctic Science, 22, 508512.Google Scholar
Cuba-Díaz, M., Fuentes, E., Rondanelli-Reyes, M. & Machuca, Á. 2015. Experimental culture of non-indigenous Juncus bufonius from King George Island, South Shetland Island, Antarctica. Advances in Polar Science, 26, 2429.Google Scholar
Cuba-Díaz, M., Troncoso, J.M., Cordero, C., Finot, V.L. & Rondanelli-Reyes, M. 2013. Juncus bufonius, a new non-native vascular plant in King George Island, South Shetland Islands. Antarctic Science, 25, 385386.Google Scholar
Ehrenfeld, J.G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503523.Google Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 4572.CrossRefGoogle ScholarPubMed
Fuentes-Lillo, E., Troncoso-Castro, J.M., Cuba-Díaz, M. & Rondanelli-Reyes, M.J. 2016. Pollen record of disturbed topsoil as an indirect measurement of the potential risk of the introduction of non-native plants in maritime Antarctica. Revista Chilena de Historia Natural, 89, 10.1186/s40693-016-0055-9.Google Scholar
Galera, H., Wódkiewicz, M., Czyż, E., Łapiński, S., Kowalska, M.E., Pasik, M., Rajner, M., Bylina, P. & Chwedorzewska, K.J. 2016. First step to eradication of Poa annua L. from Point Thomas Oasis (King George Island, South Shetlands, Antarctica). Polar Biology, 10.1007/s00300-016-2006-y.Google Scholar
Greene, S.W. & Walton, D.W.H. 1975. An annotated check list of the sub-Antarctic and Antarctic vascular flora. Polar Record, 17, 473484.Google Scholar
Gremmen, N.J.M. 1997. Changes in the vegetation of sub-Antarctic Marion Island resulting from introduced vascular plants. In Battaglia, B., Valencia, J. & Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 417423.Google Scholar
Gremmen, N.J.M. & Smith, V.R. 1999. New records of alien vascular plants from Marion and Prince Edward islands, sub-Antarctic. Polar Biology, 21, 401409.Google Scholar
Harmata, K. & Olech, M. 1991. Transect for aerobiological studies from Antarctica to Poland. Grana, 30, 458463.Google Scholar
Hughes, K.A. & Convey, P. 2012. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica: current knowledge, methodology and management action. Journal of Environmental Management, 93, 5266.Google Scholar
Hughes, K.A., Convey, P., Maslen, N.R. & Smith, R.I.L. 2010. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions, 12, 875891.Google Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24, 10311055.Google Scholar
Huiskes, A.H.L., Gremmen, N.J.M., Bergstrom, D.M., Frenot, Y., Hughes, K.A., Imura, S., Kiefer, K., Lebouvier, M., Lee, J.E., Tsujimoto, M., Ware, C., van de Vijver, B. & Chown, S.L. 2014. Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biological Conservation, 171, 278284.Google Scholar
Lebouvier, M., Laparie, M., Hulle, M., Marais, A., Cozic, Y., Lalouette, L., Vernon, P., Candresse, T., Frenot, Y. & Renault, D. 2011. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biological Invasion, 13, 11951208.CrossRefGoogle Scholar
Lee, J.E. & Chown, S.L. 2009. Quantifying the propagule load associated with the construction of an Antarctic research station. Antarctic Science, 21, 471475.CrossRefGoogle Scholar
Lee, J.E. & Chown, S.L. 2011. Quantification of intra-regional propagule movements in the Antarctic. Antarctic Science, 23, 337342.Google Scholar
Lityńska-Zając, M., Chwedorzewska, K., Korczak-Abshire, M., Augustyniuk-Kram, A. & Olech, M. 2012. Diaspores and phyto-remains accidentally transported to the Antarctic Station during three expeditions. Biodiversity and Conservation, 21, 34113421.Google Scholar
McGeoch, M.A., Shaw, J.D., Terauds, A., Lee, J.E. & Chown, S.L. 2015. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environmental Change - Human and Policy Dimensions, 32, 108125.CrossRefGoogle Scholar
Molina-Montenegro, M.A., Carrasco-Urra, F., Acuña-Rodríguez, I., Oses, R., Torres-Díaz, C. & Chwedorzewska, K.J. 2014. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Research, 33, 10.3402/polar.v33.21425.Google Scholar
Olech, M. & Chwedorzewska, J.A. 2011. The first appearance and establishment of an alien vascular plant in natural habitats on the fore field of a retreating glacier in Antarctica. Antarctic Science, 23, 153154.CrossRefGoogle Scholar
Parnikoza, I., Kozeretska, I. & Kunakh, V. 2011. Vascular plants of the maritime Antarctic: origin and adaptation. American Journal of Plant Science, 2, 381395.Google Scholar
Pertierra, L.R., Lara, F., Benayas, J. & Hughes, K.A. 2013. Poa pratensis L. current status of the longest-established non-native vascular plant in the Antarctic. Polar Biology, 36, 14731481.CrossRefGoogle Scholar
Peter, H.U., Buesser, C., Mustafa, O. & Pfeiffer, S. 2008. Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. Dessau-Roßlau: Umweltbundesamt, 344 pp.Google Scholar
Reyes, O., Casal, M. & Trabaud, L. 1997. The influence of population, fire and time of dissemination on the germination of Betula pendula seeds. Plant Ecology, 133, 201208.Google Scholar
Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D., Mayewski, P. & Summerhayes, C., eds. 2009. Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research, 195204.Google Scholar
Van de Vijver, B., Ledeganck, P. & Beyens, L. 2002. Soil diatom communities from Ile de la Possession (Crozet, sub-Antarctica). Polar Biology, 25, 721729.Google Scholar
Van der Meijden, E. & van der Waals-Kooi, R.E. 1978. The population ecology of Senecio jacobaea in a sand dune system. Journal of Ecology, 67, 131153.Google Scholar
Whinam, J., Chilcott, N. & Bergstrom, D.M. 2005. Sub-Antarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biological Conservation, 121, 207219.Google Scholar
Wódkiewicz, M., Ziemianśki, M., Kwiecien, K., Chwedorzewska, K.J. & Galera, H. 2014. Spatial structure of the soil seed bank of Poa annua L.: alien species in the Antarctic. Biodiversity and Conservation, 23, 13391346.Google Scholar
Supplementary material: PDF

Fuentes-Lillo supplementary material

Figure S1 and Table S1

Download Fuentes-Lillo supplementary material(PDF)
PDF 154.1 KB