Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:34:16.039Z Has data issue: false hasContentIssue false

Ocean salinity from satellite-derived temperature in the Antarctic Ocean

Published online by Cambridge University Press:  01 December 2015

M.A. Benallal*
Affiliation:
IMAGES ESPACE-DEV, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex 9, France ESPACE-DEV, UG UA UR UM IRD, Maison de la télédétection, 500 Rue Jean-François Breton, 34093 Montpellier Cedex 5, France
H. Moussa
Affiliation:
IMAGES ESPACE-DEV, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex 9, France ESPACE-DEV, UG UA UR UM IRD, Maison de la télédétection, 500 Rue Jean-François Breton, 34093 Montpellier Cedex 5, France
F. Touratier
Affiliation:
IMAGES ESPACE-DEV, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex 9, France ESPACE-DEV, UG UA UR UM IRD, Maison de la télédétection, 500 Rue Jean-François Breton, 34093 Montpellier Cedex 5, France
C. Goyet
Affiliation:
IMAGES ESPACE-DEV, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex 9, France ESPACE-DEV, UG UA UR UM IRD, Maison de la télédétection, 500 Rue Jean-François Breton, 34093 Montpellier Cedex 5, France
A. Poisson
Affiliation:
IMAGES ESPACE-DEV, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex 9, France Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN/IPSL), Université Pierre et Marie Curie, Paris, France

Abstract

The aim of the MINERVE project (Mesures à l’INterface Eau-aiR de la Variabilité des Échanges de CO2) is to observe and understand the seasonal and interannual variability of the partial pressure of CO2 (pCO2) in surface waters using hydrological and biogeochemical data in the Southern Ocean south of Australia. Logistics routes of the RV Astrolabe provide access to scarcely studied areas, thus allowing us to understand the different processes acting in this area of the Antarctic Ocean. The surface area covered by these cruises, however, is tiny compared with the total surface area of the Antarctic Ocean. Correlations between in situ surface temperature and salinity data were applied to satellite images of sea surface temperature to map ocean surface salinity over a much wider area than under the cruise tracks. Comparisons with salinity data from satellites which provide ~100 km resolution and 0.1 accuracy indicate that we are able to map salinity at 4 km resolution and almost the same accuracy of ± 0.1.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lagerloef, G., Boutin, J., Chao, Y., Delcroix, T., Font, J., Niiler, P., Reul, N., Riser, S., Schmitt, R., Stammer, D. & Wentz, F. 2009. Resolving the global surface salinity field and variation by blending satellite and in situ observations. Proceedings of the Ocean Obs’09. Available at: archimer.ifremer.fr/doc/00071/18216/15781.pdf.CrossRefGoogle Scholar
Laika, H.E., Goyet, C., Vouvé, F., Poisson, A. & Touratier, F. 2009. Interannual properties of the CO2 system in the Southern Ocean south of Australia. Antarctic Science, 21, 663680.Google Scholar
Le Vine, D.A., Lagerloef, G.S.E., Colomb, F.R., Yueh, S.H. & Pellerano, F.A. 2007. Aquarius: an instrument to monitor sea surface salinity from space. IEEE Transactions on Geoscience and Remote Sensing, 45, 20402050.CrossRefGoogle Scholar
Lenton, A., Tilbrook, B., Law, R.M., Bakker, D., Doney, S.C., Gruber, N., Ishii, M., Hoppema, M., Lovenduski, N.S., Matear, R.J., McNeil, B.I., Metzl, N., Fletcher, S.E.M., Monteiro, P.M.S., Rodenbeck, C., Sweeney, C. & Takahashi, T. 2013. Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences, 10, 40374054.Google Scholar
Michel, S. 2006. Télédetection de la salinité à la surface des océans. PhD thesis, University Paris VII- Denis Diderot, 353 pp.Google Scholar
Moussa, H., Benallal, M.A., Goyet, C., Lefevre, N., El Jai, M.C., Guglielmi, V. & Touratier, F. 2015. A comparison of multiple non-linear regression and neural network techniques for sea surface salinity estimation in the tropical Atlantic Ocean based on satellite data. ESAIM: Proceedings and Surveys, 49, 6577.CrossRefGoogle Scholar
Rintoul, S.R., Donguy, J.R. & Roemmich, D.H. 1997. Seasonal evolution of the upper ocean thermal structure between Tasmania and Antarctica. Deep Sea Research, I - Oceanographic Research Papers, 44, 11851202.Google Scholar
Willmott, C.J. & Matsuura, K. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 7982.Google Scholar