Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T16:35:43.995Z Has data issue: false hasContentIssue false

Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica

Published online by Cambridge University Press:  20 March 2013

S.R. Fassnacht*
Affiliation:
ESS-Watershed Science, Colorado State University, Fort Collins, CO 80523-1476, USA
J.I. López-Moreno
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Zaragoza, Spain
M. Toro
Affiliation:
Área de Medio Ambiente Hídrico, Centro de Estudios Hidrográficos (CEDEX), Madrid, Spain
D.M. Hultstrand
Affiliation:
ESS-Watershed Science, Colorado State University, Fort Collins, CO 80523-1476, USA

Abstract

Few parts of Antarctica are not permanently covered in ice. The retreat of the ice sheet from Byers Peninsula on western Livingston Island, Maritime Antarctica, has provided a new area of seasonal snow cover. Snow surveys were conducted in late November 2008 at the time of peak accumulation across the 1 km2 Lake Limnopolar watershed. Topographic variables were derived from a digital elevation model to determine the variables controlling the presence or absence of snow and the distribution of snow depth. Classification with binary regression trees showed that wind related variables dominated the presence and depth of snow. The product of the sine of aspect and the sine of slope was the first variable in both regression trees. Density profiles were also measured and illustrated a relatively homogeneous snowpack over space at peak snow accumulation.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderton, S.P., White, S.M.Alvera, B. 2004. Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes, 18, 435453.CrossRefGoogle Scholar
Anisimov, O.A., Vaughan, D.G., Callaghan, T.V., Furgal, C., Marchant, H., Prowse, T.D., Vilhjálmsson, H.Walsh, J.E. 2007. Polar regions (Arctic and Antarctic). In Parry, M.L., Canziani, O.F., Palutikof, J.P., van Der Linden, P.J.&Hanson, C.E.,eds. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 653685.Google Scholar
Balk, B.Elder, K. 2000. Combining binary regression tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research, 36, 1326.CrossRefGoogle Scholar
Bañón, M. 2004. Introducción al clima de la Península de Byers, Isla de Livingston, Antártida. Comparación con la B.A.E. Juan Carlos I. MSc thesis, Universidad de Alicante, 112 pp. [Unpublished.]Google Scholar
Bintanja, R. 1995. The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: measurements and modelling. Antarctic Science, 7, 315325.CrossRefGoogle Scholar
Björck, S., Hjort, C., Ingólfsson, Ó., Zale, R.Ising, J. 1996. Holocene deglaciation chronology from lake sediments. In López-Martínez, J., Thomson, M.R.A.&Thomson, J.W.,eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP series, sheet 5A, 1:25 000, with supplementary text. Cambridge: British Antarctic Survey, 4951.Google Scholar
Blöschl, G. 1999. Scaling issues in snow hydrology. Hydrological Processes, 13, 21492175.3.0.CO;2-8>CrossRefGoogle Scholar
Braun, M.Hock, R. 2004. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Global and Planetary Change, 42, 4558.CrossRefGoogle Scholar
Breiman, L., Friedman, J.H., Olshen, R.A.Stone, C.I. 1984. Classification and regression trees. Belmont, CA: Wadsworth, 368 pp.Google Scholar
Bruland, O., Sand, K.Killingtveit, Å. 2001. Snow distribution at a high Arctic site at Svalbard. Nordic Hydrology, 32, 112.CrossRefGoogle Scholar
Caine, N. 1975. An elevational control of peak snowpack variability. Water Resources Bulletin, 11, 613621.CrossRefGoogle Scholar
Elder, K., Dozier, J.Michaelsen, J. 1991. Snow accumulation and distribution in an alpine watershed. Water Resources Research, 27, 15411552.CrossRefGoogle Scholar
Erickson, T.A., Williams, M.W.Winstral, A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research, 41, 117.CrossRefGoogle Scholar
Erxleben, J., Elder, K.Davis, R. 2002. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes, 16, 36273649.CrossRefGoogle Scholar
Essery, R., Li, L.Pomeroy, J.W. 1999. A distributed model of blowing snow over complex terrain. Hydrological Processes, 13, 24232438.3.0.CO;2-U>CrossRefGoogle Scholar
Fassnacht, S.R., Toro Velasco, M., Meiman, P.J.Whitt, Z.C. 2010. The effect of aeolian deposition on the surface roughness of melting snow, Byers Peninsula, Antarctica. Hydrological Processes, 24, 20072013.CrossRefGoogle Scholar
Fielding, A.H.Bell, J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 3849.CrossRefGoogle Scholar
Forbes, A.D. 1995. Classification algorithm evaluation: five performance measures based on confusion matrices. Journal of Clinical Monitoring, 11, 189206.CrossRefGoogle ScholarPubMed
Guisan, A.Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147186.CrossRefGoogle Scholar
Helsel, D.R.Hirsch, R.M. 1992. Statistical methods in water resources. New York: Elsevier, 522 pp.Google Scholar
Landis, J.R.Koch, G.C. 1997. The measurement of observed agreement for categorical data. Biometrics, 33, 159174.CrossRefGoogle Scholar
Lapen, D.R.Martz, L.W. 1996. An investigation of the spatial association between snow depth and topography in a prairie agricultural landscape using digital terrain analysis. Journal of Hydrology, 184, 227298.Google Scholar
Logan, L. 1973. Basin-wide water equivalent estimation from snowpack depth measurements. Role of snow and ice in hydrology. Proceedings of the WMO/IAHS Symposium, Banff, Alberta, September 1972. IAHS Publication, No. 107, 864–884.Google Scholar
López-Martínez, J., Serrano, E., Schmid, T., Mink, S.Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155–156, 6279.CrossRefGoogle Scholar
López-Moreno, J.I.Nogués-Bravo, D. 2006. Interpolating snow depth data: a comparison of methods. Hydrological Processes, 20, 22172232.CrossRefGoogle Scholar
López-Moreno, J.I., Latron, J.Lehmann, A. 2010. Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processes, 24, 19141928.CrossRefGoogle Scholar
López-Moreno, J.I., Fassnacht, S.R., Beguería, S.Latron, J.B.P. 2011. Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere, 5, 617629.CrossRefGoogle Scholar
López-Moreno, J.I., Nogués-Bravo, D., Chueca-Cía, J.Julián-Andrés, A. 2006. Glacier development and topographical context. Earth Surface Processes and Landforms, 31, 15851594.CrossRefGoogle Scholar
Manel, S., Willia, H.C.Ormerod, S.J. 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921931.CrossRefGoogle Scholar
Meiman, J.R. 1968. Snow accumulation related to elevation, aspect and forest canopy. Proceedings of the CNC-IHD Workshop Seminar on Snow Hydrology, Fredericton, February 1968. Ottawa: Queen's Printer for Canada, 35–47.Google Scholar
Mittaz, C., Imhof, M., Hoelze, M.Haeberli, W. 2002. Snowmelt evolution mapping using an energy balance over an alpine terrain. Arctic, Antarctic and Alpine Research, 34, 274281.CrossRefGoogle Scholar
Mizukami, N.Perica, S. 2008. Spatiotemporal characteristics of snowpack density in the mountainous regions of the western United States. Journal of Hydrometeorology, 9, 14161426.CrossRefGoogle Scholar
Pons, X.Ninyerola, M. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology, 28, 18211834.CrossRefGoogle Scholar
Quesada, A., Camacho, A., Rochera, C.Velázquez, D. 2009. Byers Peninsula: a reference site for coastal, terrestrial, and limnetic ecosystem studies in Maritime Antarctica. Polar Science, 3, 181187.CrossRefGoogle Scholar
Richardson-Näslund, C. 2004. Spatial characteristics of snow accumulation in Dronning Maud Land, Antarctica. Global and Planetary Change, 42, 3143.CrossRefGoogle Scholar
Rochera, C., Justel, A., Fernández-Valiente, E., Bañón, M., Rico, E., Toro, M., Camacho, A.Quesada, A. 2010. Interannual meteorological variability and its effects on a lake from Maritime Antarctica. Polar Biology, 33, 16151628.CrossRefGoogle Scholar
Siegel, S.Castelan, N.J. 1988. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill, 399 pp.Google Scholar
Thomson, M.R.A.López-Martínez, J. 1996. Introduction. In López-Martínez, J., Thomson, M.R.A.&Thomson, J.W.,eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP series, sheet 5A, 1:25 000, with supplementary text. Cambridge: British Antarctic Survey, 15.Google Scholar
Van Lipzig, N.P.M., King, J.C., Lachlan-Cope, T.A.van den Broeke, M.R. 2004. Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. Journal of Geophysical Research, 10.1029/2004JD004701.CrossRefGoogle Scholar
Vihma, T., Mattila, O.-P., Pirazzini, R.Johansson, M.M. 2011. Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica. The Cryosphere, 5, 187201.CrossRefGoogle Scholar
Winstral, A., Elder, K.Davis, R.E. 2002. Spatial snow modeling of wind-redistributed snow using terrain-based parameters. Journal of Hydrometeorology, 3, 524538.2.0.CO;2>CrossRefGoogle Scholar
Winstral, A.Marks, D. 2002. Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrological Processes, 16, 35853603.CrossRefGoogle Scholar
Winther, J-G., Bruland, O., Sand, K., Gerland, S., Marechal, D., Ivanov, B., Glowacki, P.König, M. 2003. Snow research in Svalbard - an overview. Polar Research, 22, 125144.Google Scholar
Woo, M.-K. 1998. Arctic snow cover information for hydrological investigations at various scales. Nordic Hydrology, 29, 245266.CrossRefGoogle Scholar