Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-25T19:40:38.819Z Has data issue: false hasContentIssue false

Life in ruins: DNA metabarcoding contributes to the history of Whalers Bay wooden structures at Deception Island, South Shetland Islands

Published online by Cambridge University Press:  17 December 2024

Paulo E.A.S. Câmara*
Affiliation:
Botany Department, University of Brasília, Campus Darcy Ribeiro, Brasília, Brazil Federal University of Santa Catarina, Florianópolis, Brazil
Fabyano A. Lopes
Affiliation:
Federal University of Tocantins, Porto Nacional, Brazil
Fábio L.V. Bones
Affiliation:
Federal University of Santa Catarina, Florianópolis, Brazil
Micheline Carvalho-Silva
Affiliation:
Botany Department, University of Brasília, Campus Darcy Ribeiro, Brasília, Brazil
Peter Convey
Affiliation:
British Antarctic Survey, NERC, Cambridge, UK University of Johannesburg, Department of Zoology, Johannesburg, South Africa
Láuren De Souza
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Lívia Coelho
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
Luiz Rosa
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, MG, Brazil

Abstract

Deception Island is an Antarctic Specially Managed Area that houses historically important sites such as the remains of historical wooden buildings. The impacts of fungal communities on wood in polar historical sites have been investigated, but little is known of the impacts of other eukaryote groups. In the current study we used high-throughput sequencing to investigate the diversity of non-fungal eukaryotic organisms present in wood samples from Whalers Bay. Four sites were sampled, and DNA sequences representing three kingdoms (Chromista, Protozoa and Viridiplantae) and four phyla (Ciliophora, Perclozoa, Chlorophyta and Magnoliophyta) were identified, representing a total of 43 taxa. Biscoe House Annex hosted the richest diversity, with 20 taxa, followed by the whaling boat, Biscoe House and the Hunting Lodge, with 16, 15 and 12 taxa, respectively. The most frequently detected sequences were assigned to the ciliate group Sporadotrichida, some of which are known to play a role in cellulose degradation. Among the Chlorophyta, the sequences detected included common taxa previously recorded, but the flowering plant data represented only exotic taxa, probably associated with human activity or airborne transfer. The use of high-throughput sequencing provided valuable data on communities associated with anthropogenically sourced and now decaying wood in Antarctica.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, H.R. & Kõljalg, U. 2020. UNITE QIIME Release for Eukaryotes 2. Version 4: 2020. Retrieved from https://doi.org/10.15156/BIO/786388CrossRefGoogle Scholar
Anfuso, G., Bolívar-Anillo, H.J., Asensio-Montesinos, F., Portantiolo Manzolli, R., Portz, L. & Villate Daza, D.A. 2020. Beach litter distribution in Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 160, 10.1016/j.marpolbul.2020.111657.CrossRefGoogle Scholar
ATCM. 2013. Management Plan for Antarctic Specially Protected Area No 135. Retrieved from https://documents.ats.aq/recatt/att192_e.pdfGoogle Scholar
Banchi, E., Ametrano, C.G., Greco, S., Stanković, D., Muggia, L. & Pallavicini, A. 2020. PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database: The Journal of Biological Databases and Curation, 2020, 10.1093/database/baz155.CrossRefGoogle ScholarPubMed
Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. 2014. Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 15, 10.1186/1471-2105-15-293.CrossRefGoogle ScholarPubMed
Blanchette, R.A., Held, B.W., Jurgens, J., Stear, A. & Dupont, C. 2021. Fungi attacking historic wood of Fort Conger and the Peary Huts in the High Arctic. PLoS ONE, 16, 10.1371/journal.pone.0246049.CrossRefGoogle ScholarPubMed
Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., et al. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 6, 10.1186/s40168-018-0470-z.CrossRefGoogle ScholarPubMed
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 10.1038/s41587-019-0209-9.Google ScholarPubMed
Bushnell, B. 2014. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA: Lawrence Berkeley National Lab (LBNL). Retrieved from sourceforge.net/projects/bbmapGoogle Scholar
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 10.1038/nmeth.3869.CrossRefGoogle ScholarPubMed
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10, 10.1186/1471-2105-10-421.CrossRefGoogle ScholarPubMed
Câmara, P.E.A.S., de Souza, L.M.D., Pinto, O., Convey, P., Amorim, E.T., Carvalho-Silva, M. & Rosa, L.H. 2021a. Periphyton diversity in two different Antarctic lakes assessed using metabarcoding. Antarctic Science, 33, 10.1017/S0954102021000316.CrossRefGoogle Scholar
Câmara, P.E.A.S., Carvalho-Silva, M., Pinto, O.H.B., Amorin, E.T., Henriques, D.K., da Silva, T.H., et al. 2021b. Diversity and ecology of Chlorophyta (Viridiplantae) assemblages in protected and non-protected sites in Deception Island (Antarctica, South Shetland Islands) assessed using an NGS approach. Microbial Ecology, 81, 10.1007/s00248-020-01584-9.CrossRefGoogle ScholarPubMed
Câmara, P.E.A.S., Convey, P., Rangel, S.B., Konrath, M., Barreto, C.C., Pinto, O.H.B., et al. 2021c. The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles, 25, 10.1007/s00792-021-01235-y.CrossRefGoogle ScholarPubMed
Câmara, P.E.A.S., de Menezes, G.C.A., Oliveira, F.S., Souza, C.D., Amorim, E.T., Shaefer, C.E.G.R., et al. 2022. Diversity of Viridiplantae DNA present on rock surfaces in the Ellsworth Mountains, Continental Antarctica. Polar Biology, 45, 10.1007/s00300-022-03021-8.CrossRefGoogle Scholar
Carvalho-Silva, M., Rosa, L.H., Pinto, O., Da Silva, T., Henriques, D.K., Convey, P. & Câmara, P.E.A.S. 2021. Exploring the plant environmental DNA diversity in soil from two sites on Deception Island (Antarctica, South Shetland Islands) using metabarcoding. Antarctic Science, 33, 10.1017/S0954102021000274.CrossRefGoogle Scholar
Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One, 5, 10.1371/journal.pone.0008613.Google ScholarPubMed
De Broyer, C., Clarke, A., Koubbi, P., Pakhomov, E., Scott, F., Vanden Berghe, E. & Danis, B., eds. 2020. Register of Antarctic Marine Species. Spirotrichea. Retrieved from http://www.marinespecies.org/RAMS/aphia.php?p=taxdetails&id=1348Google Scholar
de Menezes, G.C.A., Porto, B.A., Amorim, S.S., Zani, C.L., de Almeida Alves, T.M., Sales Junior, P.A., et al. 2020. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles, 24, 10.1007/s00792-020-01161-5.CrossRefGoogle ScholarPubMed
De Souza, L.M.D., Teixeira, E.A.A., Coelho, L.C., Lopes, F.A.C., Convey, P., Carvalho-Silva, M., et al. 2022. Cryptic fungal diversity in historic wooden structures at Whalers Bay, Deception Island, Maritime Antarctic, revealed using DNA metabarcoding. Brazilian Journal of Microbiology, 54, 10.1007/s42770-022-00869-0.Google ScholarPubMed
Deiner, K., Bik, H.M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., et al. 2017. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Molecular Ecology, 26, 10.1111/mec.14350.CrossRefGoogle ScholarPubMed
Fahner, N.A., Shokralla, S., Baird, D.J. & Hajibabaei, M. 2016. Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS One, 11, 10.1371/journal.pone.0157505.CrossRefGoogle ScholarPubMed
Fonseca, B.M., Câmara, P.E.A.S., Ogaki, M.B., Pinto, O.H.B., Lirio, J.M., Coria, S.H., et al. 2022. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Molecular Biology Reports, 49, 10.1007/s11033-021-06857-1.CrossRefGoogle ScholarPubMed
Giner, C.R., Forn, I., Romac, S., Logares, R., de Vargas, C. & Massana, R. 2016. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Applied Environmental Microbiology, 82, 10.1128/AEM.00560-16.CrossRefGoogle ScholarPubMed
Goldenberger, D., Perschil, I., Ritzler, M. & Alwegg, M. 1995. A simple ‘universal’ DNA extraction procedure using SDS and Proteinase K is compatible with direct PCR amplification. PCR Methods and Applications, 4, 10.1101/gr.4.6.368.CrossRefGoogle ScholarPubMed
Greenslade, P., Potapov, M., Russell, D. & Convey, P. 2012. Global Collembola on Deception Island. Journal of Insect Science, 12, 10.1673/031.012.11101.CrossRefGoogle ScholarPubMed
Hadi, S.I.I.A., Santana, H., Brunale, P.P.M., Gomes, T.G., Oliveira, M.D., Matthiensen, A., et al. 2016. DNA barcoding green microalgae isolated from Neotropical inland waters. PLoS ONE, 11, 10.1371/journal.pone.0149284.CrossRefGoogle ScholarPubMed
Held, B.W. & Blanchette, R.A. 2017. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biology, 121, 10.1016/j.funbio.2016.11.009.CrossRefGoogle ScholarPubMed
Held, B.W., Arenz, B.E. & Blanchette, R.A. 2011 Factors influencing deterioration of historic structures at Deception Island, Antarctica. In Barr, S. & Chaplin, P., eds, Polar settlements – location, techniques and conservation. ICOMOS Monuments and Sites. Oslo, Norway: International Polar Heritage Committee, 3543.Google Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24, 10.1007/s10531-015-0896-6.CrossRefGoogle Scholar
Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., et al. 2016. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Computational Biology, 12, 10.1371/journal.pcbi.1004957.CrossRefGoogle ScholarPubMed
Jonckheere, J.F., Murase, J. & Opperdoes, F.R. 2011. A new thermophilic heterolobosean amoeba, Fumarolamoeba ceborucoi, gen. nov., sp. nov., isolated near a fumarole at a volcano in Mexico. Acta Protozoologica, 50, 10.4467/16890027AP.11.005.0005.Google Scholar
Lityńska-Zając, M., Chwedorzewska, K., Olech, M., Korczak-Abshire, M. & Augustyniuk-Kram, A. 2012. Diaspores and phyto-remains accidentally transported to the Antarctic station during three expeditions. Biodiversity and Conservation, 21, 10.1007/s10531-012-0371-6.CrossRefGoogle Scholar
Mohamed, M.E., Huseein, E.A., Farrag, H.M., Mostafa, F.A.A. & Hassan, A.T. 2016. Allovahlkampfia spelaea is a potential environmental host for pathogenic bacteria. Journal of Bacteriology and Parasitology, 7, 10.4172/2155-9597.1000255.CrossRefGoogle Scholar
Morales, J.V., Almendros, J. & Carmona, E. 2017. Detection of long-duration tremors at Deception Island volcano, Antarctica. Journal of Volcanology and Geothermal Research, 347, 10.1016/j.jvolgeores.2017.09.016.Google Scholar
Natarajan, V.P., Zhang, X., Morono, Y., Inagaki, F. & Wang, F. 2016. A modified SDS-Based DNA extraction method for high quality environmental DNA from seafloor environments. Frontiers in Microbiology, 7, 10.3389/fmicb.2016.00986.CrossRefGoogle ScholarPubMed
Osyczka, P., Mleczko, P., Karasiński, D. & Chlebicki, A. 2012. Timber transported to Antarctica: a potential and undesirable carrier for alien fungi and insects. Biological Invasions, 14, 10.1007/s10530-011-9991-0.CrossRefGoogle Scholar
Parr, C.S., Wilson, N., Leary, P., Schulz, K.S., Lans, K., Walley, L., et al. 2014. The Encyclopedia of Life v2: providing global access to knowledge about life on Earth. Biodiversity Data Journal, 2, 10.3897/BDJ.2.e1079.CrossRefGoogle Scholar
Peterson, B.F., Stewart, H.L. & Scharf, M.E. 2015. Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Insect Biochemical Molecular Biology, 59, 10.1016/j.ibmb.2015.02.009.CrossRefGoogle ScholarPubMed
Petz, W. & Foissner, W. 1997. Morphology and infraciliature of some soil ciliates (Protozoa, Ciliophora) from continental Antarctica, with notes on the morphogenesis of Sterkiella histriomuscorum. Polar Record, 33, 10.1017/S0032247400025407.CrossRefGoogle Scholar
Petz, W., Song, W. & Wilbert, N. 1995. Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia, 40, 1223.Google Scholar
Richardson, R.T., Lin, C., Sponsler, D.B., Quijia, J.O., Goodell, K. & Johnson, R.M. 2015. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 3, 10.3732/apps.1400066.CrossRefGoogle Scholar
Rippin, M., Borchhardt, N., Williams, L., Colesie, C., Jung, P., Büdel, B., et al. 2018. Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biology, 41, 10.1007/s00300-018-2252-2.CrossRefGoogle Scholar
Rosa, L.H., da Silva, T.H., Ogaki, M.B., Pinto, O.H.B., Stech, M., Convey, P., et al. 2020. DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Scientific Reports, 10, 10.1038/s41598-020-78934-7.CrossRefGoogle ScholarPubMed
Roura, M. 2012. Being there: examining the behavior of Antarctic tourists through their blogs. Polar Research, 201, 10.3402/polar.v31i0.10905.Google Scholar
Ruggiero, M.A., Gordon, D.P., Orrell, T.M., Bailly, N., Bourgoin, T., Brusca, R.C., et al. 2015. Correction: a higher level classification of all living organisms. PLoS ONE, 10, 10.1371/journal.pone.0130114.Google ScholarPubMed
Ruppert, K., Kline, R.J. & Rahman, M.S. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, 10.1016/j.gecco.2019.e00547.CrossRefGoogle Scholar
Smith, R.I.L 1984. Colonization and recovery by cryptogams following recent volcanic activity on Deception Island, South Shetland Islands. British Antarctic Survey Bulletin, 62, 2551.Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 10.1111/j.1365-294X.2012.05470.x.CrossRefGoogle ScholarPubMed
Thompson, A., Powell, G. & Adams, B. 2019. Provisional checklist of terrestrial heterotrophic protists from Antarctica. Antarctic Science, 31, 10.1017/S0954102019000361.CrossRefGoogle Scholar
Tolba, M.E.M., Huseein, E.A.M., Farrag, H.M.M., Mohamed, H.E.D., Kobayashi, S., Suzuki, J., et al. 2016. Allovahlkampfia spelaea causing keratitis in Humans. PLoS Neglected Tropical Diseases, 10, 10.1371/journal.pntd.0004841.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J., eds, PCR protocols: a guide to methods and applications. Molecular Biology Reports. London: Academic Press, 515–322.Google Scholar
Zhou, J., Bruns, M.A. & Tiedje, J.M. 1996. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 10.1128/aem.62.2.316-322.1996.CrossRefGoogle ScholarPubMed