Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T08:56:52.908Z Has data issue: false hasContentIssue false

Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica

Published online by Cambridge University Press:  20 August 2010

Rodney D. Seppelt*
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
Roman Türk
Affiliation:
Universität Salzburg, Fachbereich Organismische Biologie, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
T.G. Allan Green
Affiliation:
Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Gerald Moser
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
Stefan Pannewitz
Affiliation:
Botanisches Institut, Universität Kiel, D-24098 Kiel, Germany, and Leibniz Institute for Science and Mathematics Education, University of Kiel, Olshausenstrasse 62, D-24098 Kiel, Germany
Leo G. Sancho
Affiliation:
Dpto. Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
Burkhard Schroeter
Affiliation:
Botanisches Institut, Universität Kiel, D-24098 Kiel, Germany, and Leibniz Institute for Science and Mathematics Education, University of Kiel, Olshausenstrasse 62, D-24098 Kiel, Germany

Abstract

Botany Bay is one of the richest sites for lichen and bryophyte biodiversity in continental Antarctica. A total of 29 lichen, nine moss and one liverwort species have been identified. The most extensive vegetation occurs on a sheltered raised beach terrace. Vegetation associations are described and compared to other continental Antarctic localities that also possess a rich vegetation cover. Ordination analysis clearly indicates the importance of the type of water supply, its regularity, the substrate type, and particularly in Botany Bay, the influence of nutrients derived from the local bird population in governing plant distribution and associations. A vegetation map has been produced and can be used as a baseline to assess vegetation changes over time.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bednarek-Ochyra, H., Váňa, J., Ochyra, R. Smith, R.I.L. 2000. The liverwort flora of Antarctica. Kraków: Institute of Botany, 236 pp.Google Scholar
Beyer, L., Bölter, M. Seppelt, R.D. 2000a. Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands region of East Antarctica (Wilkes Land). Arctic, Antarctic and Alpine Research, 32, 3039.Google Scholar
Beyer, L., Pingpank, K., Wriedt, G. Bölter, M. 2000b. Soil formation in coastal continental Antarctica (Wilkes Land). Geoderma, 95, 283304.Google Scholar
Brabyn, L., Green, A., Beard, C. Seppelt, R. 2005. GIS goes nano: vegetation studies in Victoria Land, Antarctica. New Zealand Geographer, 61, 139147.CrossRefGoogle Scholar
Brabyn, L., Beard, C., Seppelt, R.D., Rudolph, E.D., Türk, R. Green, T.G.A. 2006. Quantified vegetation change over 42 years at Cape Hallett, East Antarctica. Antarctic Science, 18, 561572.CrossRefGoogle Scholar
Broady, P.A. 1986. Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. In Pickard, J., ed. Antarctic oasis: terrestrial environments and history of the Vestfold Hills. London: Academic Press, 165202.Google Scholar
Broady, P.A. 2005. The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algalogical Studies, 118, 95112.Google Scholar
Cannone, N. Seppelt, R.D. 2008. A preliminary floristic classification of southern and northern Victoria Land vegetation, continental Antarctica. Antarctic Science, 20, 553562.Google Scholar
Cardot, J. 1907. Musci. National Antarctic Expedition 1901–1904, Natural History, Zoology and Botany, 3, 16, plates I, II.Google Scholar
Castello, M. Nimis, P.L. 1995. The lichen vegetation of Terra Nova Bay (Victoria Land, continental Antarctica). Bibliotheca Lichenologica, 58, 4355.Google Scholar
Darbishire, O.V. 1910. Lichens. National Antarctic Expedition, 1901–1904, Natural History, Botany, 5, 110.Google Scholar
Doran, P.T., Priscu, J.C., Lyon, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C.H., Mckay, C.P. Parsons, A.N. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.CrossRefGoogle ScholarPubMed
Filson, R.B. 1966. The lichens and mosses of Mac.Robertson Land. Australian National Antarctic Research Expedition Report, Botany, 82, 1169.Google Scholar
Filson, R.B. 1974. Studies in Antarctic lichens. II. Lichens from the Windmill Islands, Wilkes Land. Muelleria, 3, 936.CrossRefGoogle Scholar
Fowbert, J.A. Smith, R.I.L. 1994. Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research, 26, 290296.Google Scholar
Gimingham, C.H. 1967. Quantitative community analysis of bryophyte ecology on Signy Island. Philosophical Transactions of the Royal Society of London, B252, 251259.Google Scholar
Gimingham, C.H. Smith, R.I.L. 1970. Bryophyte and lichen communities in the Maritime Antarctic. In Holdgate, M.W., ed. Antarctic ecology, vol. 2. London: Academic Press, 752785.Google Scholar
Green, T.G.A., Seppelt, R.D. Schwartz, A.-M.J. 1992. Epilithic lichens on the floor of the Taylor Valley, Ross Dependency, Antarctica. Lichenologist, 24, 5761.Google Scholar
Green, T.G.A., Schroeter, B. Sancho, L.G. 2007. Plant life in Antarctica. In Pugnaire, F.I. & Valladares, F., eds. Functional plant ecology, 2nd ed. Boca Raton, FL: CRC Press, 389433.CrossRefGoogle Scholar
Hill, M. 1979. TWINSPAN – a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca, NY: Cornell University.Google Scholar
Hill, M. Gauch, H.G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42, 4758.Google Scholar
Horikawa, Y. Ando, H. 1967. The mosses of the Ongul Islands and adjoining coastal areas of the Antarctic continent. JARE Scientific Report Special Issue, 1, 245252.Google Scholar
Howard-Williams, C. Vincent, W.F. 1989. Microbial communities in southern Victoria Land streams (Antarctica). 1. Photosynthesis. Hydrobiologia, 172, 2738.CrossRefGoogle Scholar
Howard-Williams, C., Pridmore, R.D., Downes, M.T. Vincent, W.F. 1989. Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarctic Science, 1, 125131.CrossRefGoogle Scholar
Kanda, H. 1981. Flora and vegetation of mosses in ice-free areas of Syowa Coast and Prince Olav Coast, East Antarctica. Hikobia, S1, 91100.Google Scholar
Kanda, H. 1987. Ecology of the moss vegetation in the Syowa Station area, Enderby Land, Antarctica. Symposia Biologia Hungarica, 35, 259267.Google Scholar
Kanda, H. Inoue, M. 1994. Ecological monitoring of moss and lichen vegetation in the Syowa Station area, Antarctica. Proceedings of the NIPR Symposium of Polar Biology, 7, 221231.Google Scholar
Kappen, L. 1985. Vegetation and ecology of ice-free areas of Northern Victoria Land, Antarctica. I. The lichen vegetation of Birthday Ridge and an inland mountain. Polar Biology, 4, 213225.Google Scholar
Kappen, L., Schroeter, B., Green, T.G.A. Seppelt, R.D. 1998. Microclimate conditions, meltwater moistening, and the distributional pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biology, 19, 101106.Google Scholar
Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical sysnthesis. Arctic and Alpine Research, 25, 308315.Google Scholar
Kuc, M. 1968–69. Some mosses from an Antarctic oasis. Revue Bryologique et Lichénologique, 36, 655672.Google Scholar
Lindblom, L. Søchting, U. 2008. Taxonomic revision of Xanthomendoza borealis and Xanthoria mawsonii (Lecanoromycetes, Ascomycota). Lichenologist, 40, 399409.Google Scholar
Ling, H.U. Seppelt, R.D. 1998. Non-marine algae and cyanobacteria of the Windmill Islands region, Antarctica, with descriptions of two new species. Algological Studies, 89, 4962.Google Scholar
Longton, R.E. 1972. Studies of classification, biomass, and microclimate of vegetation near McMurdo Sound. Antarctic Journal of the United States, 7(4), 8688.Google Scholar
Longton, R.E. 1973. A classification of terrestrial vegetation near McMurdo Sound, continental Antarctica. Canadian Journal of Botany, 51, 23392346.CrossRefGoogle Scholar
Longton, R.E. 1979. Vegetation ecology and classification in the Antarctic zone. Canadian Journal of Botany, 57, 22642278.CrossRefGoogle Scholar
Melick, D.R. Seppelt, R.D. 1997. Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica. Journal of Ecology, 85, 4356.CrossRefGoogle Scholar
Melick, D.R., Hovenden, M.J. Seppelt, R.D. 1994. Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, continental Antarctica. Vegetatio, 111, 7187.Google Scholar
Ochyra, R., Lewis Smith, R.I. Bednarek-Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 685 pp.Google Scholar
Økland, R.H. 1990. Vegetation ecology: theory, methods and application with reference to Fennoscandia. Sommerfeltia, S1, 233 pp.CrossRefGoogle Scholar
Oppenheimer, M. 1998. Global warming and the stability of the weest Antarctic ice sheet. Nature, 393, 225232.CrossRefGoogle Scholar
Øvstedal, D.O. Lewis Smith, R.I. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Pannewitz, S., Schlensog, M., Green, T.G.A., Sancho, L.G. Schroeter, B. 2003. Are lichens active under snow in continental Antarctica? Oecologia, 135, 3038.Google Scholar
Peat, H.J., Clarke, A. Convey, P. 2007. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132146.CrossRefGoogle Scholar
Petersen, D. Howard-Williams, C., eds. 2001. The Latitudinal Gradient Project. Christchurch: Antarctica New Zealand, Special Publication, 46 pp.Google Scholar
Ryan, K.G., Burne, A. Seppelt, R.D. 2009. Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biology, 15, 16941702.CrossRefGoogle Scholar
Sancho, L.G., Green, T.G.A. Pintado, A. 2007. Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora, 202, 667673.Google Scholar
Schroeter, B., Green, T.G.A. Seppelt, R.D. 1993. The history of Granite House and the western geological party of Scott’s Terra Nova expedition. Polar Record, 29, 219224.Google Scholar
Schroeter, B., Green, T.G.A., Pannewitz, S., Schlensog, M. Sancho, L.G. 2010. Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biology, 33, 10.1007/s00300-010-0851-7.Google Scholar
Schwarz, A.-M.J., Green, T.G.A. Seppelt, R.D. 1992. Terrestrial vegetation at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 12, 397404.Google Scholar
Seppelt, R.D. 2002. Plant communities at Wilkes Land. In Beyer, L. & Bölter, M., eds. Geoecology of Antarctic ice-free coastal landscapes. Berlin: Springer, 233248.Google Scholar
Seppelt, R.D. Ashton, D.H. 1978. Studies on the ecology of the vegetation at Mawson Station, Antarctica. Australian Journal of Ecology, 3, 373388.Google Scholar
Seppelt, R.D. Green, T.G.A. 1998. A bryophyte flora for southern Victoria Land, Antarctica. New Zealand Journal of Botany, 36, 617635.Google Scholar
Seppelt, R.D., Green, T.G.A. Schroeter, B. 1995. Lichens and mosses from the Kar Plateau, southern Victoria Land, Antarctica. New Zealand Journal of Botany, 33, 203220.Google Scholar
Seppelt, R.D., Green, T.G.A. Schroeter, B. 1996. Additions and corrections to the lichen flora of the Kar Plateau, southern Victoria Land, Antarctica. New Zealand Journal of Botany, 34, 329331.Google Scholar
Seppelt, R.D., Green, T.G.A. Skotnicki, M. 1999. Notes on the flora, vertebrate fauna and biological significance of Beaufort Island, Ross Sea, Antarctica. Polarforschung, 66, 5359.Google Scholar
Seppelt, R.D., Broady, P.A., Pickard, J. Adamson, D.A. 1988. Plants and landscape in the Vestfold Hills, Antarctica. Hydrobiologia, 165, 185196.CrossRefGoogle Scholar
Seppelt, R.D., Green, T.G.A., Schwarz, A.-M.J. Frost, A. 1992. Extreme southern locations for moss sporophytes in Antarctica. Antarctic Science, 4, 3739.Google Scholar
Smith, R.I.L. 1988. Classification and ordination of cryptogamic communities in Wilkes Land, continental Antarctica. Vegetatio, 76, 155166.CrossRefGoogle Scholar
Smith, R.I.L. 1994. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia, 99, 322328.Google Scholar
Smith, R.I.L. 1999. Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. Journal of Vegetation Science, 10, 231242.Google Scholar
Søchting, U. Seppelt, R.D. 2003. Caloplaca coeruleofrigida sp. nova, a lichen from continental Antarctica. Mycotaxon, 86, 163168.Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462.Google Scholar
Tang, E.P.Y., Tremblay, R. Vincent, W.F. 1997. Cyanobacteria dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to low temperature? Journal of Phycology, 33, 171181.CrossRefGoogle Scholar
Taylor, G. 1913. The western journeys. In Huxley, L., ed. Scott’s last expedition, vol. 2. London: Smith, Elder, 182291.Google Scholar
Taylor, G. 1916. With Scott: the silver lining. New York: Dodd, Mead, 464 pp.Google Scholar
Ter Braak, C.J.F. Smilauer, P. 1998. CANOCO Reference Manual and User’s Guide for Canoco for Windows: Software for Canonical Community Ordination (version 4). Ithaca, NY: Microcomputer Power, 352 pp.Google Scholar
Turnbull, J.D. Robinson, S.A. 2009. Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species. Global Change Biology, 15, 319329.Google Scholar
Turner, J. 2004. The El Niño–Southern Oscillation and Antarctica. International Journal of Climatology, 24, 131.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A. Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.Google Scholar
Vincent, W.F. 2000. Cyanobacterial dominance in the Polar Regions. In Whitton, B.A. & Potts, M., eds. The ecology of Cyanobacteria. Dordrecht: Kluwer Academic, 321340.Google Scholar
Vincent, W.F., Howard-Williams, C. Broady, P.A. 1993. Microbial communities and processes in Antarctic flowing waters. In Friedmann, I., ed. Antarctic microbiology. New York: Wiley-Liss, 543569.Google Scholar
Wasley, J., Robinson, S.A., Lovelock, C.E. Popp, M. 2006. Some like it wet – an endemic Antarctic bryophyte likely to be threatened under climate change induced drying. Functional Plant Biology, 33, 443455.CrossRefGoogle Scholar