Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T01:02:30.577Z Has data issue: false hasContentIssue false

Late Quaternary climate variability as recorded by micropalaeontological diatom data and geochemical data in the western Ross Sea, Antarctica

Published online by Cambridge University Press:  28 March 2013

R. Tolotti*
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Corso Europa 26, 16132 Genova, Italy
C. Salvi
Affiliation:
Museo Nazionale dell'Antartide Sezione di Trieste, via E. Weiss 21, 34127 Trieste, Italy
G. Salvi
Affiliation:
Museo Nazionale dell'Antartide Sezione di Trieste, via E. Weiss 21, 34127 Trieste, Italy
M.C. Bonci
Affiliation:
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Corso Europa 26, 16132 Genova, Italy

Abstract

Cores acquired from the Ross Sea continental shelf and continental slope during the XXX Italian Programma Nazionale di Ricerche in Antartide (PNRA) were analysed and yielded interesting micropalaeontological, biostratigraphic diatom results and palaeoceanographic implications. These multi-proxy analyses enabled us to reconstruct the glacial/deglacial history of this sector of the Ross embayment over the last 40 000 years, advancing our understanding of the Last Glacial Maximum (LGM) environmental and sedimentological processes linked to the Ross Sea ice sheet/ice shelf fluctuations in a basin and continental-slope environment, and allowed us to measure some of the palaeoceanographic dynamics. The central sector of the Ross Sea and part of its coast (south of the Drygalski Ice Tongue) enjoyed open marine conditions in the pre-LGM era (27 500–24 000 years bp). The retreat of the ice sheet could have been influenced by a southward shift of a branch of the Ross gyre, which triggered early deglaciation at c. 18 600 cal bp with a significant Modified Circumpolar Deep Water inflow over the continental slope at c. 14 380 cal BP. We assume that a lack of depositional material in each core, although at different times, represents a hiatus. Other than problems in core collection, this could be due to the onset of modern oceanographic conditions, with strong gravity currents and strong High Salinity Shelf Water exportation. Moreover, we presume that improvements in biostratigraphy, study of reworked diatom taxa, and lithological and geochemical analyses will provide important constraints for the reconstruction of the LGM grounding line, ice-flow lines and ice-flow paths and an interesting tool for reconstructing palaeo-sub-bottom currents in this sector of the Ross embayment.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S. Mosola, A.B. 2002. The Antarctic Ice sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science Reviews, 21, 4970.Google Scholar
Armand, L.K., Crosta, X., Romero, O. Pichon, J.J. 2005. The biogeography of the major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 93126.Google Scholar
Barbara, L., Crosta, X., Massé, G. Ther, O. 2010. Deglacial environments in eastern Prydz Bay, East Antarctica. Quaternary Science Reviews, 29, 27312740.Google Scholar
Barde, M.F. 1981. Les Diatomées des sediments actuels et du Quaternaire supérieur de l'Atlantique nord-oriental. Interet hydrologique et climatique. Bulletin dell'Institut de Géologie du Bassin de l'Aquitaine, 29, 85111.Google Scholar
Bart, P.J. Cone, A.N. 2011. Early stall of West Antarctic Ice Sheet advance on the eastern Ross Sea middle shelf followed by retreat at 27,500 14C yr bp . Palaeogeography, Palaeoclimatology, Palaeoecology, 335-336, 5260.Google Scholar
Bart, P.J., Sjunneskog, C. Chow, J.M. 2011. Piston-core based biostratigraphic constraints on Pleistocene oscillations of the West Antarctic Ice Sheet in western Ross Sea between North Basin and AND-1B drill site. Marine Geology, 289, 8699.Google Scholar
Budillon, G., Tucci, S., Artegiani, A. Spezie, G. 2000. Water masses and suspended matter characteristics of the western Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology. Berlin: Springer, 6381.Google Scholar
Cortese, G. Gersonde, R. 2007. Morphometric variability in the diatom Fragilariopsis kerguelensis: implications for Southern Ocean palaeoceanography. Earth and Planetary Science Letters, 257, 526544.Google Scholar
Crosta, X. Koç, N. 2007. Diatoms: from micropaleontology to isotope geochemistry. In Hillaire-Marcel, C. & De Vernal, A., eds. Proxies in late Cenozoic palaeoceanography. Amsterdam: Elsevier, 327369.Google Scholar
Crosta, X., Romero, O., Armand, L.K. Pichon, J.J. 2005. The biogeography of the major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 6692.Google Scholar
Cunningham, W.L. Leventer, A. 1998. Diatom assemblages in surface sediments of the Ross Sea: relationship to present oceanographic conditions. Antarctic Science, 10, 134146.Google Scholar
DeMaster, D.J., Dunbar, R.B., Gordon, L.I., Leventer, A.R., Morrison, J.M., Nelson, D.M., Nittrouer, C.A. Walker, O.S. Jr 1992. Cycling and accumulation of biogenic silica and organic matter in high latitude environments: the Ross Sea. Oceanography, 5, 146153.Google Scholar
Denis, D., Crosta, X., Zaragosi, S., Romero, O., Martin, B. Mas, V. 2006. Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. The Holocene, 16, 11371147.Google Scholar
Dinniman, M.S., Klinck, J.M. Smith, W.O. Jr 2011. A model study of Circumpolar Deep Water on the west Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Research II, 58, 15081523.Google Scholar
Fielder, E.K. 2010. Ocean–atmosphere heat fluxes at the Ronne Polynya, Antarctica. Weather, 65, 1621.Google Scholar
Finocchiaro, F., Baroni, C., Colizza, E. Ivaldi, R. 2007. Pre-LGM open-water conditions south of the Drygalski Ice Tongue, Ross Sea. Antarctic Science, 19, 373377.Google Scholar
Fusco, G., Budillon, G. Spezie, G. 2009. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynyas. Continental Shelf Research, 29, 18871895.Google Scholar
Gordon, A.L., Zanbianchi, E., Orsi, A., Visbeck, M., Giulivi, C.F., Whitworth III, T. Spezie, G. 2004. Energetic plumes over the western Ross Sea continental slope. Geophysical Research Letters, 31, 10.1029/2004GL020785.Google Scholar
Hedges, J. Stern, J. 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography, 29, 657663.Google Scholar
Hillenbrand, C.D., Larter, R.D., Dowdeswell, J.A., Ehrmann, W., Ó Cofaigh, C., Benetti, S., Graham, A.G.C. Grobe, H. 2010. The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: clues to West Antarctic glacial history during the Late Quaternary. Quaternary Science Reviews, 29, 27412763.Google Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E. et al. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr bp . Radiocarbon, 46, 10591086.Google Scholar
Kettler, R.M. Papastavros, E. 2000. Preliminary results of bitumen and whole-rock elemental analyses of CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 361367.Google Scholar
Licht, K.J. Andrews, J.T. 2002. The 14C record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarctic, and Alpine Research, 34, 324333.Google Scholar
Licht, K.J., Lederer, J.R. Swope, R.J. 2005. Provenance of LGM glacial till (sand fraction) across the Ross embayment, Antarctica. Quaternary Science Reviews, 24, 14991520.Google Scholar
Licht, K.J., Jennings, A.E., Andrews, J.T. Williams, K.M. 1996. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology, 24, 223226.Google Scholar
Livingstone, S.J., Ó Cofaigh, C., Stokes, C.R., Hillenbrand, C.D., Vieli, A. Jamieson, S.S.R. 2012. Antarctic palaeo-ice streams. Earth-Science Reviews, 111, 90128.Google Scholar
Maddison, E.J., Pike, J., Leventer, A., Dunbar, R., Brachfeld, S., Domack, E.W., Manley, P. McClennen, C. 2006. Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Marine Micropalaeontology, 60, 6688.Google Scholar
McKay, R., Naish, T., Powell, R., Barrett, P., Scherer, R., Talarico, F., Kyle, P., Monien, D., Kuhn, G., Jackolski, C. William, T. 2012. Pleistocene variability of Antarctic Ice Sheet extent in the Ross embayment. Quaternary Science Reviews, 34, 93112.Google Scholar
Meyers, P.A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry, 27, 213250.Google Scholar
Mosola, A.B. Anderson, J.B. 2006. Expansion and rapid retreat of the West Antarctic ice sheet in eastern Ross Sea: possible consequence of over-extended ice streams? Quaternary Science Reviews, 25, 21772196.Google Scholar
Naish, T., Carter, L., Wolff, E., Polland, D. Powell, R. 2009. Late Pliocene–Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet, ocean and atmospheric interactions. In Florindo, F. & Siegert, M.J., eds. Antarctic climate evolution. Amsterdam: Elsevier, 465529.Google Scholar
Pollard, D. DeConto, R.M. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458, 329333.Google Scholar
Presti, M., De Santis, L., Busetti, M. Harris, P.T. 2003. Late Pleistocene and Holocene sedimentation on the George V continental shelf, East Antarctica. Deep-Sea Research II, 50, 14411461.Google Scholar
Salvi, C., Busetti, M., Marinoni, L. Brambati, A. 2006. Late Quaternary glacial marine to marine sedimentation in the Pennell trough (Ross Sea, Antarctica). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 199214.Google Scholar
Salvi, C., Salvi, G., Stenni, B. Brambati, A. 2004. Palaeoproductivity in the Ross Sea during the last 15 kyr bp and its link with ice-core temperature proxies. Annals of Glaciology, 39, 17.Google Scholar
Scherer, R., Hanna, M., Maffioli, P., Sjunneskog, C., Strong, C.P., Taviani, M., Winter, D. & Andrill-Mis Science Team 2007. Palaeontologic characterization and analysis of the AND-18 core, ANDRILL McMurdo shelf project, Antarctica. Terra Antartica, 14, 223254.Google Scholar
Schrader, H.J. Gersonde, R. 1978. Diatoms and silicoflagellates. In Zachariasse, W.J. et al., eds. Micropaleontological counting methods and techniques: an exercise on an eight meters section of the lower Pliocene of Capo Rossello, Sicily. Utrecht Micropaleontological Bulletins, 17. Utrecht: Utrecht University, 129176.Google Scholar
Sjunneskog, C. Scherer, R.P. 2005. Mixed diatom assemblages in glacigenic sediment from the central Ross Sea, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 287300.Google Scholar
Taylor, F., Whitehead, J. Domack, E. 2001. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record. Marine Micropalaeontology, 41, 2543.Google Scholar
Whitehead, J.M., Wotherspoon, S. Bohaty, S.M. 2005. Minimal Antarctica sea ice during the Pliocene. Geology, 33, 137140.Google Scholar
Winter, D., Sjunneskog, C., Scherer, R., Maffioli, P., Reisselman, C. Harwood, D. 2012. Pliocene-Pleistocene diatom biostratigraphy of nearshore Antarctica from the AND-1B drill-core, McMurdo Sound. Global and Planetary Change, 96-97, 5974.Google Scholar
Zielinski, U. Gersonde, R. 2002. Plio–Pleistocene diatom biostratigraphy from ODP Leg 177, Atlantic sector of the Southern Ocean. Marine Micropalaeontology, 45, 225268.Google Scholar
Supplementary material: PDF

Tolotti supplementary material

Tolotti supplementary material

Download Tolotti supplementary material(PDF)
PDF 2 MB