Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T03:06:41.882Z Has data issue: false hasContentIssue false

Holocene changes in Proboscia diatom productivity in shelf waters of the north-western Antarctic Peninsula

Published online by Cambridge University Press:  02 September 2009

V. Willmott*
Affiliation:
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
S.W. Rampen
Affiliation:
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
E. Domack
Affiliation:
Department of Geosciences, Hamilton College, 198 College Hill Rd, Clinton, NY 13323, USA
M. Canals
Affiliation:
GRC Geociències Marines, Departament d’Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, C/ Marti i Franques s/n, 08028 Barcelona, Spain
J.S. Sinninghe Damsté
Affiliation:
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
S. Schouten
Affiliation:
Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands

Abstract

Diatoms are important primary producers in present day Antarctic waters but their relative significance in the past is less clear. In this study we used long-chain diols to reconstruct Proboscia diatom productivity in shelf waters of the western Antarctic Peninsula over the last 8500 yr. Biomarker lipid analysis revealed the presence of a suite of long-chain diols in the sediments, mainly comprising the C28 and C30 1,14-diol isomers derived from Proboscia diatoms and C28 and C30 1,13-diols derived from other unknown algae. The relative importance of Proboscia diatoms was assessed using the relative abundances of 1,14-diols versus 1,13-diols, which showed that Proboscia diatoms were relatively more abundant during the Late Holocene, suggesting that stronger upwelling of circumpolar waters occurred at that time. The variations in the diol index strongly correlate with melt events in the Siple Dome ice core, suggesting that the climatic processes responsible for changes in mean summer temperature, open marine influence and atmospheric cyclonic activity recorded at Siple Dome, also controlled the productivity of Proboscia diatoms on the western Antarctic Peninsula region.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J.T., DeMaster, D.J. Jennings, A.E. 1999. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Research, 52, 206216.CrossRefGoogle Scholar
Barcena, M.A., Isla, E., Plaza, A., Flores, J.A., Sierro, F.J., Masque, P., Sanchez-Cabeza, J.A. Palanques, A. 2002. Bioaccumulation record and paleoclimatic significance in the western Bransfield Strait: the last 2000 years. Deep Sea Research II, 49, 935950.CrossRefGoogle Scholar
Bentley, C.R., Hodgson, D.A., Sudgen, D.E., Roberts, S.J., Smith, A.J., Leng, M.J. Bryant, C. 2005. Early Holocene retreat of the George VI Ice Shelf, Antarctic Peninsula. Geology, 33, 173176.CrossRefGoogle Scholar
Brichta, M. Nöthig, E.-M. 2003. Proboscia inermis: a key diatom species in Antarctic autumn. In AGU Chapman Conference: The role of diatom production and Si flux and burial in the regulation of global cycles, Paros, Greece, http://hdl.handle.net/10013/epic.20073.Google Scholar
Das, S.B. Alley, R.B. 2008. Rise in frequency of surface melting at Siple Dome through the Holocene: evidence for increasing marine influence on the climate of West Antarctica. Journal of Geophysical Research, 113, 111.CrossRefGoogle Scholar
Dinniman, M.S. Klinck, J.M. 2004. A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf. Deep Sea Research II, 51, 20032022.CrossRefGoogle Scholar
Dixit, S., Van Cappellen, P. Van Bennekom, A.J. 2001. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry, 73, 333352.CrossRefGoogle Scholar
Domack, E.W., Leventer, A., Dunbar, R., Taylor, C.B., Brachfeld, S., Sjunneskog, C.ODP Leg 178 Scientific Party. 2001. Cronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene, 11, 19.CrossRefGoogle Scholar
Domack, E.W., Leventer, A., Root, S., Ring, J., Williams, E., Carlson, D., Hirshorn, E., Wright, W., Gilbert, R. Burr, G. 2003. Marine sedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula. Antarctic Research Series, 79, 205224.Google Scholar
Fogt, R. Bromwich, D.H. 2006. Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. Journal of Climate, 19, 979999.CrossRefGoogle Scholar
Garibotti, I.A., Vernet, M., Smith, R.C. Ferrario, M.E. 2005. Interannual variability in the distribution of the phytoplankton standing stock across the seasonal sea-ice zone west of the Antarctic Peninsula. Journal of Plankton Research, 27, 825843.CrossRefGoogle Scholar
Harangozo, S. 2006. Atmospheric circulation impacts on winter maximum sea ice extent in the west Antarctic Peninsula region (1979–2001). Geophysical Research Letters, 33, 02510.01029/02005GL024978.CrossRefGoogle Scholar
Heroy, D.C., Sjunneskog, C. Anderson, J.B. 2008. Holocene climate change in the Bransfield Basin, Antarctic Peninsula: evidence from sediment and diatom analysis. Antarctic Science, 20, 6987.CrossRefGoogle Scholar
Hofmann, E.E., Klinck, J.M., Lascara, C.M. Smith, D.A. 1996. Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. Antarctic Research Series, 70, 6180.CrossRefGoogle Scholar
Ingólfsson, O., Hjort, C., Berkman, P.A., Björck, S., Colhoun, E., Goodwin, I.D., Hall, B.L., Hirakawa, K., Melles, M., Möller, P. Prentice, M.L. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Ishman, S.E. Sperling, M.R. 2002. Benthic foraminiferal record of Holocene deep-water evolution in the Palmer Deep, western Antarctic Peninsula. Geology, 30, 435438.2.0.CO;2>CrossRefGoogle Scholar
Isla, E., Masque, P., Palanques, A., Guillen, J., Puig, P. Sanchez-Cabeza, J.A. 2004. Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache Straits, Antarctica: a relation to currents, primary production, and sea floor relief. Marine Geology, 209, 265277.CrossRefGoogle Scholar
Jordan, R.W., Ligowski, R., Nöthig, E.-M. Priddle, J. 1991. The diatom genus Proboscia in Antarctic waters. Diatom Research, 6, 6378.CrossRefGoogle Scholar
Kemp, A.E.S., Pike, J., Pearce, R.B. Lange, C.B. 2000. The “Fall dump” - a new perspective on the role of a “shade flora: in the annual cycle of diatom production and export flux. Deep-Sea Research II, 47, 21292154.CrossRefGoogle Scholar
Lassiter, A.M., Wilkerson, F.P., Dugdale, R.C. Hogue, V.E. 2006. Phytoplankton assemblages in the CoOP-WEST coastal upwelling area. Deep-Sea Research II, 53, 30633077.CrossRefGoogle Scholar
Leventer, A., Domack, E.W., Ishman, S.E., Brachfeld, S.A., McClennen, C.E. Manley, P. 1996. Productivity cycles of 200–300 years in the Antarctic Peninsula Region: understanding linkages among the sun, atmosphere, oceans, sea ice and biota. Geological Society of America Bulletin, 108, 16261644.2.3.CO;2>CrossRefGoogle Scholar
Maddison, E.J., Pike, J., Leventer, A., Dunbar, R., Brachfeld, S., Domack, E.W., Manley, P. McClennen, C.E. 2006. Post-glacial seasonal diatom record of the Mertz Glacier polynya, East Antarctica. Marine Micropaleontology, 60, 6688.CrossRefGoogle Scholar
Martin, J.H., Fitzwater, S.E. Gordon, R.M. 1990a. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4, 512.CrossRefGoogle Scholar
Martin, J.H., Gordon, R.M. Fitzwater, S.E. 1990b. Iron in Antarctic waters. Nature, 345, 156158.CrossRefGoogle Scholar
Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C. Vernet, M. 2008. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep Sea Research II, 55, 19641987.CrossRefGoogle Scholar
Méjanelle, L., Sanchez-Gargallo, A., Bentaleb, I. Grimalt, J.O. 2003. Long chain n-alkyl diols, hydroxy ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Organic Geochemistry, 34, 527538.CrossRefGoogle Scholar
Meredith, M.P. King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, 10.1029/2005GL024042.CrossRefGoogle Scholar
Mitchell, B.G. Holm-Hansen, O. 1991. Observations and modeling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Research, 38, 9811007.CrossRefGoogle Scholar
Mitchell, B.G., Brady, E.A., Holm-Hansen, O., McClain, C. Bishop, J. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnology and Oceanography, 36, 16621667.CrossRefGoogle Scholar
Pike, J., Allen, C.S., Leventer, A., Stickley, C.E. Pudsey, C.J. 2008. Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontology, 67, 274287.CrossRefGoogle Scholar
Prézelin, B.B., Hofmann, E.E., Mengelt, C. Klinck, J.M. 2000. The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the West Antarctic Peninsula continental shelf. Journal of Marine Research, 58, 165202.CrossRefGoogle Scholar
Rampen, S.W., Schouten, S., Wakeham, S.G. Damsté, J.S.S. 2007. Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea. Organic Geochemistry, 38, 165179.CrossRefGoogle Scholar
Rampen, S.W., Schouten, S., Koning, E., Brummer, G.-J.A. Damsté, J.S.S. 2008. A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index. Earth and Planetary Science Letters, 276, 207213.CrossRefGoogle Scholar
Rind, D., Chandler, M., Lerner, J., Martinson, D.G. Yuan, X. 2001. The climate response to basin-specific changes in latitudinal temperature gradients and the implications for sea ice variability. Journal of Geophysical Research, 106, 161176.CrossRefGoogle Scholar
Shevenell, A.E. Kennett, J.P. 2002. Antarctic Holocene climate change: a benthic foraminifer stable isotope record from Palmer Deep. Paleoceanography, 17, 114.CrossRefGoogle Scholar
Shevenell, A.E., Domack, E.W. Kernan, G.M. 1996. Record of Holocene paleoclimate change along the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord. Papers and Proceedings of the Royal Society of Tasmania, 130, 5564.CrossRefGoogle Scholar
Sievers, C. Helmut, A. 1982. Descripción de las condiciones oceanográficas físicas, como apoyo al estudio de la distribución y comportamiento del krill. Instituto Antártico Chileno.Serie Científica, 28, 87136.Google Scholar
Sinninghe Damsté, J.S.S., Rampen, S., Rijpstra, W.I.C., Abbas, B., Muyzer, G. Schouten, S. 2003. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high-nutrient conditions. Geochimica et Cosmochimica Acta, 67, 13391348.CrossRefGoogle Scholar
Smith, D.A. Klinck, J.M. 2002. Water properties on the west Antarctic Peninsula continental shelf: a model study of effects of surface fluxes and sea ice. Deep Sea Research II, 49, 48634886.CrossRefGoogle Scholar
Smith, D.A., Hofmann, E.E., Klinck, J.M. Lascara, C.M. 1999. Hydrography and circulation of the West Antarctic Peninsula Continental Shelf. Deep Sea Research, 46, 925949.CrossRefGoogle Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C. Iannuzzi, R.A. 2008a. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep Sea Research II, 55, 20412058.CrossRefGoogle Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X. Rind, D. 2008b. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 113, 120.CrossRefGoogle Scholar
Stickley, C.E., Pike, J., Leventer, A., Dunbar, R., Domack, E.W., Brachfeld, S., Manley, P. McClennan, C. 2005. Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290310.CrossRefGoogle Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A. Lagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.CrossRefGoogle Scholar
Versteegh, G.J.M., Bosch, H.-J. De Leeuw, J.W. 1997. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids: a critical review. Organic Geochemistry, 27, 113.CrossRefGoogle Scholar
Volkman, J.K., Barrett, S.M. Blackburn, S.I. 1999. Eustigmatophyte microalgae are potential sources of C-29 sterols, C-22-C-28 n-alcohols and C-28-C-32 n-alkyl diols in freshwater environments. Organic Geochemistry, 30, 307318.CrossRefGoogle Scholar
Willmott, V., Domack, E.W., Canals, M. Brachfeld, S. 2006. A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula. Quaternary Research, 66, 111.CrossRefGoogle Scholar
Willmott, V., Domack, E.W., Padman, L. Canals, M. 2007. Glacio-marine sediment drifts from Gerlache Strait, Antarctic Peninsula. In Glasser, N. & Hambrey, M.J. eds. Glacial sedimentary processes and products. : IAS Special Publication. Blackwells, 6784.CrossRefGoogle Scholar
Yoon, H.I., Park, B.-K., Kim, Y. Kang, C.Y. 2002. Glaciomarine sedimentation and its paleoclimatic implications on the Antarctic Peninsula shelf over the last 15000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 235254.CrossRefGoogle Scholar
Yuan, X. 2004. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Science, 16, 415425.CrossRefGoogle Scholar
Zhou, M., Niiler, P.P. Hu, J.-H. 2002. Surface currents in the Bransfield and Gerlache Straits, Antarctica. Deep Sea Research I, 49, 267280.CrossRefGoogle Scholar