Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T01:56:20.907Z Has data issue: false hasContentIssue false

Glaciochemistry of surface snow from the Ingrid Christensen Coast, East Antarctica, and its environmental implications

Published online by Cambridge University Press:  23 March 2010

M. Thamban*
Affiliation:
National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama, Goa 403 004, India
C.M. Laluraj
Affiliation:
National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama, Goa 403 004, India
K. Mahalinganathan
Affiliation:
National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama, Goa 403 004, India
B.L. Redkar
Affiliation:
National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama, Goa 403 004, India
S.S. Naik
Affiliation:
National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama, Goa 403 004, India
P.K. Shrivastava
Affiliation:
Geological Survey of India (Antarctica Division), NH-5P, N.I.T., Faridabad 121001, India

Abstract

Spatial variations in the ion composition were studied in 55 surface snow samples collected along three transects in the Ingrid Christensen Coast of East Antarctica. The sea-salt ion constituents revealed a drastic reduction from the ice edge to inland sites. The computed sea-salt sodium and non-sea-salt calcium concentrations suggest that while sea spray primarily contributes to the Na+, the crustal contribution dominates the Ca2+ in snow samples. The Cl-/ssNa+ ratios of the snow samples from the Larsemann transect varied between 4.7 and 1.05, indicating that additional Cl- sources like soil dust are important in the inland sites. The enrichment factors (Ef) confirm a dominant crustal source for Ca2+ in all transects. The Ef(K+) values indicate a dominant sea spray source for K+ in the coastal stations of the Larsemann and Publications transects. The Ef(Mg2+) values indicate the absence of any significant Mg2+ enrichment compared to seawater values. Secondary sulphur species (nssSO42- and MSA) within the snow samples suggest that both vary independently of each other, possibly influenced by the local biological activities. The nssSO42- data revealed that several summer snow deposits in the study region are significantly fractionated, apparently related to the sea ice existence during summer.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becagli, S., Proposito, M., Benassai, S., Gragnani, R., Magand, O., Traversi, R.Udisti, R. 2005. Spatial distribution of biogenic sulphur compounds (MSA, nssSO42-) in the northern Victoria Land–Dome C–Wilkes Land area, East Antarctica. Annals of Glaciology, 41, 2331.CrossRefGoogle Scholar
Becagli, S., Proposito, M., Benassai, S., Flora, O., Genoni, L., Gragnani, R., Largiuni, O., Pili, S.L., Severi, M., Stenni, B., Traversi, R., Udisti, R.Frezzotti, M. 2004. Chemical and isotopic snow variability in East Antarctica along the 2001–02 ITASE traverse. Annals of Glaciology, 39, 473482.CrossRefGoogle Scholar
Benassai, S., Becagli, S., Gragnani, R., Magand, O., Proposito, M., Fattori, I., Traversi, R.Udisti, R. 2005. Sea-spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Annals of Glaciology, 41, 3240.Google Scholar
Bertler, N.A.N., Mayewski, P.A., Aristarain, A., Barrett, P., Becagli, S., Bernardo, R., Bo, S., Xiao, C., Curran, M., Qin, D., Dixon, D., Ferron, F., Fischer, H., Frey, M., Frezzotti, M., Fundel, F., Genthon, C., Gragnani, R., Hamilton, G., Handley, M., Hong, S., Isaksson, E., Kang, J., Ren, J., Kamiyama, K., Kanamori, S., Kärkäs, E., Karlöf, L., Kaspari, S., Kreutz, K., Kurbatov, A., Meyerson, E., Ming, Y., Zhang, M., Motoyama, H., Mulvaney, R., Oerter, H., Osterberg, E., Proposito, M., Pyne, A., Ruth, U., Simões, J., Smith, B., Sneed, S., Teinilä, K., Traufetter, F., Udisti, R., Virkkula, A., Watanabe, O., Williamson, B., Winther, J-G., Li, Y., Wolff, E.W., Li, Z.Zielinski, A. 2005. Snow chemistry across Antarctica. Annals of Glaciology, 41, 167179.CrossRefGoogle Scholar
Bowen, H.J.M. 1979. Environmental chemistry of the elements. London: Academic Press, 333 pp.Google Scholar
Chester, R. 2003. Marine geochemistry. Oxford: Blackwell Science, 506 pp.Google Scholar
Hall, J.S.Wolff, E.W. 1998. Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmospheric Environment, 32, 36693677.Google Scholar
Kärkäs, E., Teinila, K., Virkkula, A.Aurela, M. 2005. Spatial variations of surface snow chemistry during two austral summers in western Dronning Maud Land, Antarctica. Atmospheric Environment, 39, 14051416.Google Scholar
Keene, W.C., Pszenny, A.A.P., Galloway, J.N.Hawley, M.E. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91, 66476658.Google Scholar
Kreutz, K.J.Mayewski, P.A. 1999. Spatial variability of Antarctic surface snow glaciochemistry: implications for palaeoatmospheric circulation reconstructions. Antarctic Science, 11, 105118.CrossRefGoogle Scholar
Legrand, M.Delmas, R.J. 1988. Formation of HCl in the Antarctic atmosphere. Journal of Geophysical Research, 93, 71537168.Google Scholar
Legrand, M.Mayewski, P.A. 1997. Glaciochemistry of polar ice cores: a review. Reviews of Geophysics, 35, 219243.CrossRefGoogle Scholar
Legrand, M.Pasteur, E.C. 1998. Methane sulfonic acid to non-sea-salt sulphate ratio in coastal Antarctic aerosol and surface snow. Journal of Geophysical Research, 103, 1099111006.Google Scholar
Minikin, A., Legrand, M., Hall, J., Wagenbach, D., Kleefeld, C., Wolff, E., Pasteur, E.C.Ducroz, F. 1998. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. Journal of Geophysical Research, 103, 1097510990.CrossRefGoogle Scholar
O’Dwyer, J., Isaksson, E., Vinje, T., Juahiainen, T., Moore, J., Pohjola, V., Vaikmäe, R.van de Wal, R.S.W. 2000. Methanesulfonic acid in a Svalbard ice core as an indicator of ocean climate. Geophysical Research Letters, 27, 11591162.Google Scholar
Rankin, A.M., Wolff, E.W.Martin, S. 2002. Frost flowers: implications for tropospheric chemistry and ice core interpretation. Journal of Geophysical Research, 107, 10.1029/2002JD002492.Google Scholar
Röthlisberger, R., Mulvaney, R., Wolff, E.W., Hutterli, M.A., Bigler, M., Sommer, S.Jouzel, J. 2002. Dust and sea-salt variability in central East Antarctica (Dome C) over the last 45 k years and its implications for southern high-latitude climate. Geophysical Research Letters, 29, 10.1029/2002GL015186.Google Scholar
Röthlisberger, R., Hutterli, M.A., Sommer, S., Wolff, E.W.Mulvaney, R. 2000. Factors controlling nitrate in ice cores: evidence from the Dome C deep ice core. Journal of Geophysical Research, 105, 2056520572.CrossRefGoogle Scholar
Schall, C., Heumann, K.G., DE Mora, S.J.Lee, P.A. 1996. Biogenic brominated and iodinated organic compounds in ponds on the McMurdo Ice Shelf, Antarctica. Antarctic Science, 8, 4548.CrossRefGoogle Scholar
Thamban, M., Chaturvedi, A., Rajkumar, A., Naik, S.S., D’Souza, W., Singh, A., Rajan, S.Ravindra, R. 2006. Aerosol perturbation related to volcanic eruptions during the past few centuries as recorded in an ice core from the central Dronning Maud Land, Antarctica. Current Science, 91, 12001207.Google Scholar
Traversi, R., Becagli, S., Castellano, E., Largiuni, O., Migliori, A., Severi, M., Frezzotti, M.Udisti, R. 2004. Spatial and temporal distribution of environmental markers from coastal to plateau areas in Antarctica by firn core chemical analysis. International Journal of Environmental Analytical Chemistry, 84, 457470.Google Scholar
Udisti, R., Becagli, S., Castellano, E., Traversi, R., Vermigli, S.Piccardi, G. 1999. Sea-spray and marine biogenic seasonal contribution to snow composition at Terra Nova Bay, Antarctica. Annals of Glaciology, 29, 7783.CrossRefGoogle Scholar
Udisti, R., Becagli, S., Benassai, S., Castellano, E., Fattori, I., Innocenti, M., Migliori, A.Traversi, R. 2004. Atmosphere-snow interaction by a comparison between aerosol and uppermost snow layers composition at Dome C (East Antartica). Annals of Glaciology, 39, 5361.CrossRefGoogle Scholar
Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M., Hall, J.S.Wolff, E.W. 1998. Sea-salt aerosol in coastal Antarctic regions. Journal of Geophysical Research, 103, 1096110974.Google Scholar
Whitlow, S., Mayewski, P.A.Dibb, J.E. 1992. A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit, Greenland. Atmospheric Environment, 26, 20452054.Google Scholar