Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T18:10:29.290Z Has data issue: false hasContentIssue false

Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data

Published online by Cambridge University Press:  17 December 2018

Juliana Costi*
Affiliation:
Centro Polar e Climático, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Laboratório de Análise Numérica e Sistemas Dinâmicos, Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Rio Grande, Brazil
Jorge Arigony-Neto
Affiliation:
Laboratório de Monitoramento da Criosfera, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
Matthias Braun
Affiliation:
Institut für Geographie, Friedrich-Alexander-University Erlangen-Nürnberg, Wetterkreuz 15, D-91058 Erlangen, Germany
Bulat Mavlyudov
Affiliation:
Russian Academy of Sciences, Institute of Geography, Vavilova, 37, Moscow, Russia
Nicholas E. Barrand
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
Aline Barbosa da Silva
Affiliation:
Laboratório de Monitoramento da Criosfera, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
Wiliam Correa Marques
Affiliation:
Laboratório de Análise Numérica e Sistemas Dinâmicos, Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Rio Grande, Brazil
Jefferson Cardia Simões
Affiliation:
Centro Polar e Climático, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract

Using the positive degree days approach and ERA-Interim reanalysis downscaled data, the researchers ran a melt model spatially gridded at 200 m with annual temporal resolution over 32 years and estimated surface melt (SM) and surface runoff (SR) on the Antarctic Peninsula. The model was calibrated and validated independently by field measurements. The maximum surface melt values occurred in 1985 (129 Gt), and the maximum runoff (40 Gt) occurred in 1993; both parameters showed minimum values in 2014 (26 Gt and 0.37 Gt, respectively). No significant trends are present. Two widespread positive anomalies occurred in 1993 and 2006. The results reveal that the floating ice areas produce an average of 68% of runoff and 61% of surface melt, emphasizing their importance to coastal hydrography. During the seven years preceding the Larsen B collapse, surface melt retention was higher than 95% on floating ice areas, and negative runoff anomalies persisted. Excluding the islands, the vicinity of this former ice shelf exhibits the highest specific surface melt and runoff across the studied area.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, N.J., Mulvaney, R., Wolff, E.W., Triest, J., Kipfstuhl, S., Trusel, L.D., Vimeux, F., Fleet, L. & Arrowsmith, C. 2013. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nature Geoscience, 6, 10.1038/ngeo1787.Google Scholar
Barrand, N.E., Vaughan, D.G., Steiner, N., Tedesco, M., Kuipers Munneke, P., Van Den Broeke, M.R. & Hosking, J.S. 2013. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research: Earth Surface, 118, 10.1029/2012JF002559.Google Scholar
Braithwaite, R.J. & Zhang, Y. 2000. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. Journal of Glaciology, 46, 714.Google Scholar
Braun, M. & Hock, R. 2004. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Global and Planetary Change, 42, 10.1016/j.gloplacha.2003.11.010.Google Scholar
Braun, M., Humbert, A. & Moll, A. 2009. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. The Cryosphere Discussions, 2, 10.5194/tcd-2-341-2009.Google Scholar
Braun, M., Saurer, H., Vogt, S., Simoes, J.C. & Gossmann, H. 2001. The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap. International Journal of Climatology, 21, 10.1002/joc.563/pdf.Google Scholar
Cape, M.R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T. & Domack, E. 2015. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. Journal of Geophysical Research - Atmospheres, 120, 10.1002/2015JD023465.Google Scholar
Cook, A.J. & Vaughan, D.G. 2010. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4, 10.5194/tc-4-77-2010.Google Scholar
Dierssen, H.M., Smith, R.C. & Vernet, M. 2002. Glacial meltwater dynamics in coastal waters west of the Antarctic Peninsula. Proceedings of the National Academy of Sciences of the United States of America, 99, 10.1073/pnas.032206999.Google Scholar
Fürst, J.J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M. & Gagliardini, O. 2016. The safety band of Antarctic ice shelves. Nature Climate Change, 6, 10.1038/nclimate2912. Google Scholar
Gesch, D.B., Verdin, K.L. & Greenlee, S.K. 1999. New land surface digital elevation model covers the Earth. Eos, Transactions of American Geophysical Union, 80, 6970.Google Scholar
Hock, R. 2003. Temperature index melt modelling in mountain areas. Journal of Hydrology, 282, 10.1016/S0022-1694(03)00257-9.Google Scholar
Hock, R., De Woul, M., Radic, V. & Dyurgerov, M. 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophysical Research Letters, 36, 10.1029/2008GL037020. Google Scholar
Hodson, A., Nowak, A., Sabacka, M., Jungblut, A., Navarro, F., Pearce, D., Ávila-Jimenez, M.L., Convey, P. & Vieira, G. 2017. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nature Communications, 8, 10.1038/ncomms14499.Google Scholar
Hogg, A.E. & Gudmundsson, G.H. 2017. Impacts of the Larsen-C Ice Shelf calving event. Nature Climate Change, 7, 10.1038/nclimate3359.Google Scholar
Humbert, A., Gross, D., Müller, R., Braun, M., Van De Wal, R.S.W., Van Den Broeke, M.R., Vaughan, D.G. & Van De Berg, W.J. 2010. Deformation and failure of the ice bridge on the Wilkins Ice Shelf, Antarctica. Annals of Glaciology, 51, 10.3189/172756410791392709.Google Scholar
Huybrechts, P. & Oerlemans, J. 1990. Response of the Antarctic ice sheet to future greenhouse warming. Climate Dynamics, 5, 93102.Google Scholar
Jansen, D., Luckman, A.J., Cook, A., Bevan, S., Kulessa, B., Hubbard, B. & Holland, P.R. 2015. Brief communication: newly developing rift in Larsen-C Ice Shelf presents significant risk to stability. The Cryosphere, 9, 10.5194/tc-9-1223-2015.Google Scholar
Kienteca Lange, P., Tenenbaum, D.R., Tavano, V.M., Paranhos, R. & Campos, L. de S. 2014. Shifts in microphytoplankton species and cell size at Admiralty Bay, Antarctica. Antarctic Science, 27, 10.1017/S0954102014000571.Google Scholar
Kuipers Munneke, P., Picard, G., Van Den Broeke, M.R., Lenaerts, J.T.M. & Van Meijgaard, E. 2012. Insignificant change in Antarctic snowmelt volume since 1979. Geophysical Research Letters, 39, 10.1029/2011GL050207.Google Scholar
Liu, H., Jezek, K.C., Li, B. & Zhao, Z. 2015 . RADARSAT Antarctic mapping project digital elevation model, version 2. Boulder, Colorado: National Snow and Ice Data Center, Distributed Active Archive Center. Digital media.Google Scholar
Liu, H., Wang, L. & Jezek, K.C. 2006. Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and special sensor microwave imager data (1978–2004). Journal of Geophysical Research, 111, 10.1029/2005JF000318.Google Scholar
Luckman, A., Elvidge, A., Jansen, D., Kulessa, B., Kuipers Munneke, P., King, J. & Barrand, N. 2014. Surface melt and ponding on Larsen-C Ice Shelf and the impact of föhn winds. Antarctic Science, 26, 625635.Google Scholar
Marinsek, S. & Ermolin, E. 2015. 10-year mass balance by glaciological and geodetic methods of Glaciar Bahía del Diablo, Vega Island, Antarctic Peninsula. Annals of Glaciology, 56, 141146, 10.3189/2015AoG70A958.Google Scholar
Mavlyulov, B.R. 2014. Balans massy l'da lednikovogo kupola Bellingshausen v 2007–2012 (o. King-Dzordz, Udznye Shetlandskie ostrova, Antarctica) (Ice mass balance of Bellingshausen Dome in 2007–2012 (King George Island, South Shetland Islands, Antarctica)). Led I Sneg (Ice and Snow), 1, 2734.Google Scholar
Moline, M.A., Claustre, H., Frazer, T.K., Schofield, O. & Vernet, M. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 10, 10.1111/j.1365-2486.2004.00825.x.Google Scholar
Morris, E.M. & Vaughan, D.G. 2003. Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of viability of ice shelves. Antarctic Research Series, 79, 10.1029/AR079p0061.Google Scholar
Navarro, F.J., Jonsell, U.Y., Corcuera, M.I. & Martín-Español, A. 2013. Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59, 10.3189/2013JoG12J144.Google Scholar
Nędzarek, A. 2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 20, 10.1017/S0954102007000909.Google Scholar
Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J. & Trigo, R. 2017. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the Cryosphere. Science of the Total Environment, 580, 10.1016/j.scitotenv.2016.12.030.Google Scholar
Osmanoglu, B., Navarro, F.J., Hock, R., Braun, M. & Corcuera, M.I. 2014. Surface velocity and mass balance of Livingston Island ice cap. The Cryosphere, 8, 10.5194/tc-8-1807-2014.Google Scholar
Pfeffer, W.T., Meier, M.F. & Illangasekare, T.H. 1991. Retention of Greenland runoff by refreezing: implications for projected future sea level change. Journal of Geophysical Research, 96, 10.1029/91JC02502.Google Scholar
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R. & Padman, L. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 10.1038/nature10968.Google Scholar
Rau, F. & Braun, M. 2002. The regional distribution of the dry-snow zone on the Antarctic Peninsula north of 70oS. Annals of Glaciology, 34, 10.3189/172756402781817914.Google Scholar
Rye, C.D., Naveira Garabato, A.C., Holland, P.R., Meredith, M.P., George Nurser, A.J., Hughes, C.W., Coward, A.C. & Webb, D.J. 2014. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geoscience, 7, 10.1038/ngeo2230.Google Scholar
Scambos, T., Hulbe, C. & Fahnestock, M. 2003 . Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 7992 . Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O. & Ferreyra, G.A. 2012. Response of phytoplankton dynamics to 19-year (1991−2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems, 92, 10.1016/j.jmarsys.2011.10.006.Google Scholar
Skvarca, P., De Angelis, H. & Ermolin, E. 2004. Mass balance of “Glaciar Bahía del Diablo”, Vega Island, Antarctic Peninsula. Annals of Glaciology, 39, 10.3189/172756404781814672.Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. & Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature, 457, 10.1038/nature08286.Google Scholar
Tedesco, M. & Monaghan, A.J. 2009. An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability. Geophysical Research Letters, 36, 10.1029/2009GL039186.Google Scholar
Thomas, E.R., Marshall, G.J. & McConnell, J.R. 2008. A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophysical Research Letters, 35, 10.1029/2007GL032529.Google Scholar
Torinesi, O., Fily, M. & Genthon, C. 2003. Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. Journal of Climate, 16, 10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2.2.0.CO;2.>Google Scholar
Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., et al. 2007. Observations: surface and atmospheric climate change. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L., eds. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 1009 pp.Google Scholar
Trusel, L.D., Frey, K.E., Das, S.B., Munneke, P.K. & Van Den Broeke, M.R. 2013. Satellite-based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 40, 10.1002/2013GL058138.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P. A. & Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 10.1002/joc.1130.Google Scholar
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R. & Deb, P. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 10.1038/nature18645.Google Scholar
Välisuo, I., Vihma, T. & King, J.C. 2014. Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989-2010. The Cryosphere, 8, 10.5194/tc-8-1519-2014.Google Scholar
Van de Berg, W.J., van den Broeke, M.R., Reijmer, C.H. & van Meijgaard, E. 2005. Characteristics of the Antarctic surface mass balance (1958−2002) using a regional atmospheric climate model. Annals of Glaciology, 41, 97104.Google Scholar
van Wessem, J.M., Ligtenberg, S.R.M., Reijmer, C.H., van de Berg, W.J., van den Broeke, M.R., Barrand, N.E., Thomas, E.R., Turner, J., Wuite, J., Scambos, T.A. & van Meijgaard, E. 2016. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. The Cryosphere, 10, 271285.Google Scholar
Vaughan, D.G. 2006. Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarctic and Alpine Research, 38, 147152.Google Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J.C., Pudsey, C.J. & Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 10.1023/A:1026021217991.Google Scholar
Wouters, B., Helm, V., Flament, T., Wessem, J.M. Van, , Ligtenberg, S.R.M. & Bamber, J.L. 2015. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science, 348, 899904.Google Scholar
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. & Steffen, K. 2002. Surface melt−induced acceleration of Greenland Ice-Sheet flow. Science, 297, 218223.Google Scholar