Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:28:20.321Z Has data issue: false hasContentIssue false

Episodic basin-scale soil moisture anomalies associated with high relative humidity events in the McMurdo Dry Valleys, Antarctica

Published online by Cambridge University Press:  24 August 2021

Joseph Levy*
Affiliation:
Colgate University Department of Geology, Hamilton, NY 13346, USA

Abstract

Outside of hydrologically wetted active layer soils and humidity-sensitive soil brines, low soil moisture is a limiting factor controlling biogeochemical processes in the McMurdo Dry Valleys. But anecdotal field observations suggest that episodic wetting and darkening of surface soils in the absence of snowmelt occurs during high humidity conditions. Here, I analyse long-term meteorological station data to determine whether soil-darkening episodes are present in the instrumental record and whether they are, in fact, correlated with relative humidity. A strong linear correlation is found between relative humidity and soil reflectance at the Lake Bonney long-term autonomous weather station. Soil reflectance is found to decrease annually by a median of 27.7% in response to high humidity conditions. This magnitude of darkening is consistent with soil moisture rising from typical background values of < 0.5 wt.% to 2–3 wt.%, suggesting that regional atmospheric processes may result in widespread soil moisture generation in otherwise dry surface soils. Temperature and relative humidity conditions under which darkening is observed occur for hundreds of hours per year, but are dominated by episodes occurring between midnight and 07h00 local time, suggesting that wetting events may be common, but are not widely observed during typical diel science operations.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, B.A. & Levy, J.S. 2015. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica. Journal of Geophysical Research - Biogeosciences, 120, 10.1002/(ISSN)2169-8961.10.1002/2014JG002856CrossRefGoogle Scholar
Ball, B.A. & Virginia, R.A. 2015. Controls on diel soil CO2 flux across moisture gradients in a polar desert. Antarctic Science, 27, 10.1017/S0954102015000255&domain=pdf.10.1017/S0954102015000255CrossRefGoogle Scholar
Ball, B.A., Virginia, R.A., Barrett, J.E., Parsons, A.N. & Wall, D.H. 2009. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils. Soil Biology and Biochemistry, 41, 10.1016/j.soilbio.2009.04.011.10.1016/j.soilbio.2009.04.011CrossRefGoogle Scholar
Bisson, K.M., Welch, K.A., Welch, S.A., Sheets, J.M., Lyons, W.B., Levy, J.S. & Fountain, A.G. 2018. Patterns and processes of salt efflorescences in the McMurdo region, Antarctica. Arctic, Antarctic, and Alpine Research, 47, 10.1657/AAAR0014-024.Google Scholar
Bockheim, J.G. 2010. Evolution of desert pavements and the vesicular layer in soils of the Transantarctic Mountains. Geomorphology, 118, 10.1016/j.geomorph.2010.02.012.10.1016/j.geomorph.2010.02.012CrossRefGoogle Scholar
Bockheim, J.G, Campbell, I. B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 10.1002/ppp.588.10.1002/ppp.588CrossRefGoogle Scholar
Bockheim, J.G., Prentice, M. L. & McLeod, M. 2008. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica. Arctic, Antarctic, and Alpine Research, 40, 10.1657/1523-0430(06-057)%5BBOCKHEIM%5D2.0.CO;2.10.1657/1523-0430(06-057)[BOCKHEIM]2.0.CO;2CrossRefGoogle Scholar
Briegleb, B.P., Minnis, P., Ramanathan, V. & Harrison, E. 1986. Comparison of regional clear-sky albedos inferred from satellite observations and model computations. Journal of Applied Meteorology and Climatology, 25, 10.1175/1520-0450(1986)025<0214:CORCSA>2.0.CO;2.Google Scholar
Burkins, M.B., Virginia, R.A. & Wall, D.H. 2001. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 113125.10.1046/j.1365-2486.2001.00393.xCrossRefGoogle Scholar
Burkins, M.B., Virginia, R.A., Chamberlain, C.P. & Wall, D.H. 2000. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 23772391.10.1890/0012-9658(2000)081[2377:OADOSO]2.0.CO;2CrossRefGoogle Scholar
Campbell, I.B. & Claridge, G. 1987. Antarctica: soils, weathering processes and environment. Amsterdam and New York: Elsevier Science Publishers, 1 p.Google Scholar
Campbell, I.B., Claridge, G.G.C., Balks, M.R. & Campbell, D.I. 1997. Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-dree landscapes. Rotterdam: Balkema, 6176.Google Scholar
Canisius, F., Wang, S., Croft, H., Leblanc, S.G., Russell, H.A.J., Chen, J. & Wang, R. 2019. A UAV-based sensor system for measuring land surface albedo: tested over a boreal peatland ecosystem. Drones, 3, 10.3390/drones3010027.10.3390/drones3010027CrossRefGoogle Scholar
Cartwright, K. & Harris, H.J. 1982. Hydrogeology of the dry valley region, Antarctica. In McGinnis, L.D., ed. Dry Valley drilling project. Washington, DC: American Geophysical Union, 193214.Google Scholar
Dickinson, W.W. & Rosen, M.R. 2003. Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31, 199202.10.1130/0091-7613(2003)031<0199:APAAFW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Dickson, J.L., Head, J.W., Levy, J.S. & Marchant, D.R. 2013. Don Juan Pond, Antarctica: near-surface CaCl2-brine feeding Earth's most saline lake and implications for Mars. Scientific Reports, 3, 10.1038/srep01166.Google Scholar
Doran, P.T. & Fountain, A.G. 2019. High frequency measurements from Lake Bonney Meteorological Station (BOYM) in Taylor Valley, Antarctica from 1993 to present. Environmental Data Initiative. Available at https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-mcm&identifier=7003&revision=17.Google Scholar
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. & Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. 107, 10.1029/2001JD002045.Google Scholar
Fountain, A.G., Fernandez-Diaz, J., Obryk, M. K., Levy, J. & Gooseff, M.N. 2017. High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions. Earth System Science Data, 9, 435443.10.5194/essd-9-435-2017CrossRefGoogle Scholar
Fountain, A.G., Nylen, T.H., Monaghan, A., Basagic, H.J. & Bromwich, D. 2009. Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30, 10.1002/joc.1933.Google Scholar
Gates, D.M. 1965. Radiant energy, its receipt and disposal. In Waggoner, P.E., Gates, D.M., Webb, E.K., van Wijk, W.R., Businger, J.A., Crawford, T.V., et al. , eds. Agricultural meteorology. Boston, MA: American Meteorological Society, 126.Google Scholar
George, S.F., Fierer, N., Levy, J.S. & Adams, B. 2021. Antarctic water tracks: microbial community responses to variation in soil moisture, pH, and salinity. Frontiers in Microbiology, 12, 10.3389/fmicb.2021.616730.10.3389/fmicb.2021.616730CrossRefGoogle ScholarPubMed
Gooseff, M.N., Barrett, J.E. & Levy, J.S. 2013. Shallow groundwater systems in a polar desert, McMurdo Dry Valleys, Antarctica. Hydrogeology Journal, 21, 10.1007/s10040-012-0926-3.10.1007/s10040-012-0926-3CrossRefGoogle Scholar
Gooseff, M.N., McKnight, D.M., Runkel, R.L. & Vaughn, B.H. 2003. Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17, 10.1002/hyp.1210.10.1002/hyp.1210CrossRefGoogle Scholar
Gooseff, M.N., Wlostowski, A., McKnight, D.M. & Jaros, C. 2016. Hydrologic connectivity and implications for ecosystem processes - lessons from naked watersheds. Geomorphology, 277, 10.1016/j.geomorph.2016.04.024.Google Scholar
Gough, R.V., Wong, J., Dickson, J.L., Levy, J.S., Head, J.W., Marchant, D.R. & Tolbert, M.A. 2017. Brine formation via deliquescence by salts found near Don Juan Pond, Antarctica: laboratory experiments and field observational results. Earth and Planetary Science Letters, 476, 10.1016/j.epsl.2017.08.003.10.1016/j.epsl.2017.08.003CrossRefGoogle Scholar
Hagedorn, B., Sletten, R.S. & Hallet, B. 2007. Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica, 112, 10.1029/2006JF000580.10.1029/2006JF000580CrossRefGoogle Scholar
Hagedorn, B., Sletten, R.S., Hallet, B., McTigue, D.F. & Steig, E.J. 2010. Ground ice recharge via brine transport in frozen soils of Victoria Valley, Antarctica: insights from modeling δ18O and δD profiles. Geochimica et Cosmochimica Acta, 74, 10.1016/j.gca.2009.10.021.10.1016/j.gca.2009.10.021CrossRefGoogle Scholar
Harris, K.J., Carey, A.E., Lyons, W.B., Welch, K.A. & Fountain, A.G. 2007. Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 10.1130/B25913.1.10.1130/B25913.1CrossRefGoogle Scholar
Huang, J. 2018. A simple accurate formula for calculating saturation vapor pressure of water and ice. Journal of Applied Meteorology and Climatology, 57, 10.1175/JAMC-D-17-0334.1.10.1175/JAMC-D-17-0334.1CrossRefGoogle Scholar
Kennedy, A.D. 1993. Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arctic and Alpine Research, 25, 308315.10.2307/1551914CrossRefGoogle Scholar
Kowalewski, D.E., Marchant, D.R., Head, J.W. III & Jackson, D.W. 2011. A 2D model for characterising first-order variability in sublimation of buried glacier ice, Antarctica: assessing the influence of polygon troughs, desert pavements and shallow subsurface salts. Permafrost and Periglacial Processes, 23, 10.1002/ppp.731.Google Scholar
Levy, J.S. & Schmidt, L. 2016. Thermal properties of Antarctic soils: wetting controls subsurface thermal state. Antarctic Science, 28, 361370.10.1017/S0954102016000201CrossRefGoogle Scholar
Levy, J., Fountain, A., Lyons, W.B. & Welch, K. 2015. Experimental formation of pore fluids in McMurdo Dry Valleys soils. Antarctic Science, 27, 10.1017/S0954102014000479.10.1017/S0954102014000479CrossRefGoogle Scholar
Levy, J.S., Fountain, A.G., Welch, K.A. & Lyons, W.B. 2012. Hypersaline ‘wet patches’ in Taylor Valley, Antarctica. Geophysical Research Letters, 39, 10.1029/2012GL050898.10.1029/2012GL050898CrossRefGoogle Scholar
Levy, J., Nolin, A., Fountain, A. & Head, J. 2014. Hyperspectral measurements of wet, dry, and saline soils from the McMurdo Dry Valleys: soil moisture properties from remote sensing. Antarctic Science, 26, 10.1017/S0954102013000977.10.1017/S0954102013000977CrossRefGoogle Scholar
Levy, J.S., Fountain, A.G., Gooseff, M.N., Welch, K.A. & Lyons, W.B. 2011. Water tracks and permafrost in Taylor Valley, Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin, 123, 10.1130/B30436.1.10.1130/B30436.1CrossRefGoogle Scholar
Levy, J.S., Fountain, A.G., Gooseff, M.N., Barrett, J.E., vanTreese, R., Welch, K.A., et al. 2013. Water track modification of soil ecosystems in Taylor Valley, Antarctica. Antarctic Science, 26, 153162.10.1017/S095410201300045XCrossRefGoogle Scholar
Lyons, W., Fountain, R., Doran, P., Priscu, J., Neumann, K. & Welch, K.A. 2000. Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355367.10.1046/j.1365-2427.2000.00513.xCrossRefGoogle Scholar
Lyons, W.B., Welch, K.A., Carey, A.E., Doran, P.T., Wall, D.H., Virginia, R.A., et al. 2005. Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event. Annals of Glaciology, 40, 200206.10.3189/172756405781813609CrossRefGoogle Scholar
Marion, B. 2021. Measured and satellite-derived albedo data for estimating bifacial photovoltaic system performance. Solar Energy, 215, 10.1016/j.solener.2020.12.050.10.1016/j.solener.2020.12.050CrossRefGoogle Scholar
McKay, C.P. 2009. Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 8994.10.1017/S0954102008001508CrossRefGoogle Scholar
McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. & Tate, C.M. 1999. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985995.10.2307/1313732CrossRefGoogle Scholar
Nkem, J.N., Virginia, R.A., Barrett, J.E., Wall, D.H. & Li, G. 2005. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 29, 10.1007/s00300-005-0101-6.Google Scholar
Poage, M.A., Barrett, J.E., Virginia, R.A. & Wall, D.H. 2008. The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 40, 10.1657/1523-0430(06-051)[POAGE]2.0.CO;2.10.1657/1523-0430(06-051)[POAGE]2.0.CO;2CrossRefGoogle Scholar
Seybold, C.A., Harms, D.S., Balks, M., Aislabie, J., Paetzold, R.F., Kimble, J. & Sletten, R. 2009. Soil climate monitoring project in the Ross Island region of Antarctica. Soil Horizons, 50, 10.2136/sh2009.2.0052.10.2136/sh2009.2.0052CrossRefGoogle Scholar
Steinhart, J.S. & Hart, S.R. 1968. Calibration curves for thermistors. Deep Sea Research, 15, 497503.Google Scholar
Toner, J.D. & Sletten, R.S. 2013. The formation of Ca-Cl-rich groundwaters in the Dry Valleys of Antarctica: field measurements and modeling of reactive transport. Geochimica et Cosmochimica Acta, 110, 10.1016/j.gca.2013.02.013.10.1016/j.gca.2013.02.013CrossRefGoogle Scholar
Wierzchos, J., Davila, A.F., Sánchez-Almazo, I.M., Hajnos, M., Swieboda, R. & Ascaso, C. 2012. Novel water source for endolithic life in the hyperarid core of the Atacama Desert. Biogeosciences, 9, 10.5194/bg-9-2275-2012.10.5194/bg-9-2275-2012CrossRefGoogle Scholar
Wilson, A.T. 1964. Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1,200 years ago. Nature, 201, 176177.10.1038/201176b0CrossRefGoogle Scholar
Wlostowski, A.N., Gooseff, M.N. & Adams, B.J. 2018. Soil moisture controls the thermal habitat of active layer soils in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research - Biogeosciences, 123, 10.1002/2017JG004018.10.1002/2017JG004018CrossRefGoogle Scholar
Yang, F. 2008. Dependence of land surface albedo on solar zenith angle: observations and model parameterization. Journal of Applied Meteorology and Climatology, 47, 10.1175/2008JAMC1843.1.10.1175/2008JAMC1843.1CrossRefGoogle Scholar
Supplementary material: File

Levy supplementary material

Levy supplementary material

Download Levy supplementary material(File)
File 2.8 MB