Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:38:36.532Z Has data issue: false hasContentIssue false

Endophytic bacterial diversity of an Antarctic moss, Sanionia uncinata

Published online by Cambridge University Press:  25 October 2012

Mira Park
Affiliation:
Division of Life Sciences, Korea Polar Research Institute, Get-pearl Tower, Songdo Techno Park, 12 Gaetbeol-ro, Yonsoo-gu, Incheon 406-840, Republic of Korea
Hyoungseok Lee
Affiliation:
Division of Life Sciences, Korea Polar Research Institute, Get-pearl Tower, Songdo Techno Park, 12 Gaetbeol-ro, Yonsoo-gu, Incheon 406-840, Republic of Korea
Soon Gyu Hong
Affiliation:
Division of Life Sciences, Korea Polar Research Institute, Get-pearl Tower, Songdo Techno Park, 12 Gaetbeol-ro, Yonsoo-gu, Incheon 406-840, Republic of Korea
Ok-Sun Kim*
Affiliation:
Division of Life Sciences, Korea Polar Research Institute, Get-pearl Tower, Songdo Techno Park, 12 Gaetbeol-ro, Yonsoo-gu, Incheon 406-840, Republic of Korea
*
corresponding author: [email protected]

Abstract

Although the beneficial effects of endophytic bacteria on their host are significant, the investigation of the microbial diversity in any Antarctic moss has been neglected. In this study, we investigate the endophytic bacterial diversity of the upper green part and the lower brown part of Sanionia uncinata through 16S rRNA genes using pyrosequencing. Proteobacteria was the most dominant phylum with 65.6%, followed by Bacteroidetes (29.1%) and Actinobacteria (11.7%). The different distribution of Alphaproteobacteria between the upper green (2%) and lower brown (22.2%) parts of the moss was significant. Furthermore, dominant and diverse species were detected and closely related to the environmental sequences. These findings suggest that there are likely to be specific relationships between endophytes and host Antarctic moss species.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cardinale, M., De Castro, J.V. Jr, Müller, H., Berg, G.Grube, M. 2008. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiology Ecology, 66, 6371.CrossRefGoogle ScholarPubMed
Clarke, L.J.Robinson, S.A. 2008. Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytologist, 179, 776783.CrossRefGoogle ScholarPubMed
Hedenäs, L. 2012. Global phylogeography in Sanionia uncinata (Amblystegiaceae: Bryophyta). Botanical Journal of the Linnean Society, 168, 1942.CrossRefGoogle Scholar
Höflich, G., Wiehe, W.Kühn, G. 1994. Plant growth stimulation by inoculation with symbiotic and associative rhizosphere mechanisms. Experientia, 50, 897905.CrossRefGoogle Scholar
Hollants, J., Leliaert, F., De Clerck, O.Willems, A. 2010. How endo- is endo-? Surface sterilization of delicate samples: a Bryopsis (Bryopsidales, Chlorophyta) case study. Symbiosis, 51, 131138.CrossRefGoogle Scholar
Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W.W.Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Environmental Microbiology, 70, 26672677.CrossRefGoogle ScholarPubMed
Ikeda, S., Okubo, T., Anda, M., Nakashita, H., Yasuda, M., Sato, S., Kaneko, T., Tabata, S., Eda, S., Momiyama, A., Terasawa, K., Mitsui, H.Minamisawa, K. 2010. Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Plant & Cell Physiology, 51, 13981410.CrossRefGoogle ScholarPubMed
Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S.Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716721.CrossRefGoogle ScholarPubMed
Lee, J.H., Yi, H., Jeon, Y.S.Chun, J. 2012. TBS: a clustering algorithm based on prokaryotic taxonomy. Journal of Microbiology, 50, 181185.CrossRefGoogle Scholar
Morris, R.M., Rappe, M.S., Connon, S.A., Vergin, K.L., Siebold, W.A., Carlson, C.A.Giovannoni, S.J. 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806810.CrossRefGoogle ScholarPubMed
Na, H., Kim, O.S., Yoon, S.H., Kim, Y.Chun, J. 2011. Comparative approach to capture bacterial diversity of coastal waters. Journal of Microbiology, 49, 729740.CrossRefGoogle ScholarPubMed
Nakatsubo, T. 2002. Predicting the impact of climatic warming on the carbon balance of the moss Sanionia uncinata on a Maritime Antarctic island. Journal of Plant Research, 115, 99106.CrossRefGoogle ScholarPubMed
Ochyra, R., Lewis-Smith, R.I.Bednarek-Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 685 pp.Google Scholar
Reiter, B., Pfeifer, U., Schwab, H.Sessitsch, A. 2002. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Environmental Microbiology, 68, 22612268.CrossRefGoogle ScholarPubMed
Rosenblueth, M.Martínez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827837.CrossRefGoogle ScholarPubMed