Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:32:51.025Z Has data issue: false hasContentIssue false

Early life history traits of Trematomus scotti in the Bransfield Strait

Published online by Cambridge University Press:  25 June 2015

Mario La Mesa*
Affiliation:
ISMAR-CNR, Istituto di Scienze Marine, Sede di Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy
Barbara Catalano
Affiliation:
ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Vitaliano Brancati 48, 00144 Roma, Italy
Christopher D. Jones
Affiliation:
Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA

Abstract

Early life history traits of the blackfin notothen, Trematomus scotti, were investigated through otolith microincrement pattern and stomach content analyses. Post-larval specimens of 12–20 mm standard length (SL) were collected in the Bransfield Strait and adjacent waters during the 2010–11 summer. Catches were unevenly distributed across the surveyed area, yielding a relative abundance of 0.3–3.6 specimens per 1000 m3 of filtered sea water. Age estimates ranged from 34 to 67 days, with good consistency and no apparent bias between readings. Based on an exponential model fitted to the age-length dataset, the growth rate was 0.17 mm day-1, corresponding to a daily percentage increment in size of 1.07% SL. In agreement with previous studies, larval hatching occurred at a mean size of 9.0 mm and was spread over a relatively short period, lasting from late December to late January. Prey composition consisted exclusively of copepods, mainly larval stages of copepodites. Feeding intensity ranged from 1–14 prey items per stomach, being positively correlated with larval fish size. In summary, T. scotti shares a common early life history strategy with several other notothenioids, consisting of small larvae hatching in summer and overwintering as pelagic early juveniles until the following summer season.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, A. 1998. Life cycle strategies of epipelagic copepods in the Southern Ocean. Journal of Marine Systems, 15, 289311.CrossRefGoogle Scholar
Balbontin, F., Garreton, M. & Neuling, J. 1986. Composición del alimento y tamaño de las presas en larvas de peces del estrecho Bransfield (SIBEX-Fase II – Chile). Serie Cientifica INACH, 35, 125144.Google Scholar
Beamish, R.J. & Fournier, D.A. 1981. A method of comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38, 982983.CrossRefGoogle Scholar
Campana, S.E. 2001. Accuracy, precision, and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59, 197242.Google Scholar
Capella, J.E., Ross, R.M., Quetin, L.B. & Hofmann, E.E. 1992. A note on the thermal structure of the upper ocean in the Bransfield Strait South Shetland Islands region. Deep-Sea Research I - Oceanographic Research Papers, 39, 12211229.CrossRefGoogle Scholar
Catalán, I.A., Morales-Nin, B., Company, J.B., Rotllant, G., Palomera, I. & Emelianov, M. 2008. Environmental influences on zooplankton and micronekton distribution in the Bransfield Strait and adjacent waters. Polar Biology, 31, 691707.CrossRefGoogle Scholar
Chang, W.Y.B. 1982. A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences, 39, 12081210.Google Scholar
Daniels, R.A. & Lipps, J.H. 1982. Distribution and ecology of fishes of the Antarctic Peninsula. Journal of Biogeography, 9, 19.Google Scholar
DeWitt, H.H., Heemstra, P.C. & Gon, O. 1990. Nototheniidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: JLB Smith Institute of Ichthyology, 279331.Google Scholar
Dietrich, K., Brooks, C., Bystrom, I., Driscoll, R., Ferm, N., Hinke, J., Janssen, M., Lombard, D., Pesce, A., Romain, S., Thoresen, L. & van Cise, A. 2014. Distribution and catch rates of zooplankton around the South Shetland Islands, Antarctica. NOAA Technical Memorandum NMFS SWFSC, 524, 1827.Google Scholar
Duhamel, G., Kock, K.H., Balguerias, E. & Hureau, J.C. 1993. Reproduction in fish of the Weddell Sea. Polar Biology, 13, 193200.Google Scholar
Ekau, W. 1991. Reproduction in high Antarctic fishes (Notothenioidei). Meeresforschung - Reports on Marine Research, 33, 159167.Google Scholar
Hofmann, E.E., Klinck, J.M., Lascara, C.M. & Smith, D.A. 1996. Hydrography and circulation west of the Antarctic Peninsula and including Bransfield Strait. Antarctic Research Series, 70, 6180.Google Scholar
Houde, E.D. 1987. Fish early life dynamics and recruitment variability. American Fisheries Society Symposium, 2, 1729.Google Scholar
Jones, C.D., Koubbi, P., Catalano, B., Dietrich, K. & Ferm, N. 2014. Mesopelagic and larval fish survey. NOAA Technical Memorandum NMFS SWFSC, 524, 2840.Google Scholar
Kellermann, A. 1986. On the biology of early life stages of notothenioid fishes (Pisces) off the Antarctic Peninsula. Berichte zur Polarforschung, 31, 1149.Google Scholar
Kellermann, A. 1989. The larval fish community in the zone of seasonal pack-ice cover and its seasonal and interannual variability. Archiv für Fischereiwissenschaft, 39, 81109.Google Scholar
Kellermann, A. 1990. Catalogue of early life stages of Antarctic notothenioid fish. Berichte zur Polarforschung, 67, 45136.Google Scholar
Kellermann, A. & Schadwinkel, S. 1991. Winter aspects of the ichthyoplankton community in Antarctic Peninsula waters. Polar Biology, 11, 117127.CrossRefGoogle Scholar
Kellermann, A.K., Gauldie, R.W. & Ruzicka, J.J. 2002. Otolith microincrements in the Antarctic fishes Notothenia coriiceps and Pseudochaenichthys georgianus . Polar Biology, 25, 799807.Google Scholar
Kock, K.H. & Jones, C.D. 2005. Fish stocks in the southern Scotia Arc region – a review and prospects for future research. Reviews in Fisheries Science, 13, 75108.Google Scholar
Kock, K.H., Busch, M., Holst, M., Klimpel, S., Pietschok, D., Pshenichnov, L., Riehl, R. & Schöling, S. 2008. The demersal fish fauna of the western Weddell Sea. Berichte zur Polarforschung, 569, 6769.Google Scholar
Koubbi, P., Duhamel, G. & Camus, P. 1990. Early life stages of Notothenioidei from the Kerguelen Islands Indian Ocean. Cybium, 14, 225238.Google Scholar
La Mesa, M., Catalano, B., Koubbi, P. & Jones, C.D. 2013. Early ontogeny of the mackerel icefish, Champsocephalus gunnari, in the southern Scotia Arc. Polar Biology, 36, 797805.Google Scholar
Loeb, V.J. 1991. Distribution and abundance of larval fishes collected in the western Bransfield Strait region, 1986–87. Deep Sea Research I - Oceanographic Research Papers, 38, 12511260.Google Scholar
Loeb, V.J., Kellermann, A.K., Koubbi, P., North, A.W. & White, M.G. 1993. Antarctic larval fish assemblages: a review. Bulletin of Marine Science, 53, 416449.Google Scholar
Morales-Nin, B., Palomera, I. & Busquets, X. 2002. A first attempt at determining larval growth in three Antarctic fish from otoliths and RNA/DNA ratios. Polar Biology, 25, 360365.CrossRefGoogle Scholar
Morales-Nin, B., Palomera, I. & Schadwinkel, S. 1995. Larval fish distribution and abundance in the Antarctic Peninsula region and adjacent waters. Polar Biology, 15, 143154.CrossRefGoogle Scholar
Morley, S.A., Belchier, M., Dickson, J. & Mulvey, T. 2005. Daily otolith increment validation in larval mackerel icefish, Champsocephalus gunnari. Fisheries Research, 75, 200203.Google Scholar
Mujica, A. & Asencio, A. 1985. Larvas de péces, eufáusidos y estructura comunitaria del zooplancton del estrecho Bransfield (crucero SIBEX-INACH, 1984). Serie Cientifica INACH, 33, 159186.Google Scholar
North, A.W. 1998. Growth of young fish during winter and summer at South Georgia, Antarctica. Polar Biology, 19, 198205.Google Scholar
North, A.W. 2001. Early life history strategies of notothenioids at South Georgia. Journal of Fish Biology, 58, 496505.Google Scholar
North, A.W. & Kellermann, A. 1990. Key to the early stages of Antarctic fish. Berichte zur Polarforschung, 67, 144.Google Scholar
North, A.W. & Ward, P. 1990. The feeding ecology of larval fish in an Antarctic fjord, with emphasis on Champsocephalus gunnari. In Kerry, K.R. & Hempel, G., eds. Antarctic ecosystems. Berlin: Springer, 208213.Google Scholar
North, A.W. & White, M.G. 1987. Reproductive strategies of Antarctic fish. In Kullander, S.O. & Fernholm, B., eds. Proceedings of the Fifth Congress of European Ichthyologists. Stockholm, 381391.Google Scholar
Radtke, R.L. & Kellermann, A. 1991. Microstructural analysis of growth patterns in the early life history of Antarctic fishes. In Di Prisco, G., Maresca, B. & Tota, B., eds. Biology of Antarctic fish. Berlin: Springer, 101115.CrossRefGoogle Scholar
Radtke, R.L., Targett, T.E., Kellermann, A., Bell, J.L. & Hill, K.T. 1989. Antarctic fish growth: profile of Trematomus newnesi . Marine Ecology Progress Series, 57, 103117.Google Scholar
Ruzicka, J.J. 1996. Comparison of the two alternative early life-history strategies of the Antarctic fishes Gobionotothen gibberifrons and Lepidonotothen larseni . Marine Ecology Progress Series, 133, 2941.CrossRefGoogle Scholar
Thompson, A.F., Heywood, K.J., Thorpe, S.E., Renner, A.H.H. & Trasvina, A. 2009. Surface circulation at the tip of the Antarctic Peninsula from drifters. Journal of Physical Oceanography, 39, 326.Google Scholar