Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T02:36:57.577Z Has data issue: false hasContentIssue false

Chemical limnology in coastal East Antarctic lakes: monitoring future climate change in centres of endemism and biodiversity

Published online by Cambridge University Press:  23 September 2011

Elie Verleyen*
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Dominic A. Hodgson
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
John Gibson
Affiliation:
Landscape Logic, Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, Private Bag 49, Hobart, TAS 7001, Australia
Satoshi Imura
Affiliation:
National Institute of Polar Research, 10-3, Midori-machi, Tachikawa-shi, Tokyo 190-8518, Japan
Enn Kaup
Affiliation:
Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Sakae Kudoh
Affiliation:
National Institute of Polar Research, 10-3, Midori-machi, Tachikawa-shi, Tokyo 190-8518, Japan
Aaike De Wever
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
Tamotsu Hoshino
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-higashi, Toyohir-ku, Sapporo 062-8517, Japan
Andrew McMinn
Affiliation:
Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Hobart, TAS 7001, Australia
Dagmar Obbels
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Donna Roberts
Affiliation:
Antarctic Climate and Ecosystems Cooperative Research Centre, Private Bag 80, Hobart, TAS 7001, Australia
Steve Roberts
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Koen Sabbe
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Caroline Souffreau
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Ines Tavernier
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Wim van Nieuwenhuyze
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Eric van Ranst
Affiliation:
Department of Geology and Soil Science (WE13), Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Nicole Vindevogel
Affiliation:
Department of Geology and Soil Science (WE13), Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
Wim Vyverman
Affiliation:
Lab. Protistology & Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium

Abstract

Polar lakes respond quickly to climate-induced environmental changes. We studied the chemical limnological variability in 127 lakes and ponds from eight ice-free regions along the East Antarctic coastline, and compared repeat specific conductance measurements from lakes in the Larsemann Hills and Skarvsnes covering the periods 1987–2009 and 1997–2008, respectively. Specific conductance, the concentration of the major ions, pH and the concentration of the major nutrients underlie the variation in limnology between and within the regions. This limnological variability is probably related to differences in the time of deglaciation, lake origin and evolution, geology and geomorphology of the lake basins and their catchment areas, sub-regional climate patterns, the distance of the lakes and the lake districts to the ice sheet and the Southern Ocean, and the presence of particular biota in the lakes and their catchment areas. In regions where repeat surveys were available, inter-annual and inter-decadal variability in specific conductance was relatively large and most pronounced in the non-dilute lakes with a low lake depth to surface area ratio. We conclude that long-term specific conductance measurements in these lakes are complementary to snow accumulation data from ice cores, inexpensive, easy to obtain, and should thus be part of long-term limnological and biological monitoring programmes.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work

References

Axford, Y., Briner, J.P., Cooke, C.A., Francis, D.R., Michelutti, N., Miller, G.H., Smol, J.P., Thomas, E.K., Wilson, C.R.Wolfe, A.P. 2009. Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proceedings of the National Academy of Sciences of the United States of America, 106, 18 44318 446.CrossRefGoogle Scholar
Barrett, J.E., Virginia, R.A., Lyons, W.B., McKnight, D.M., Priscu, J.C., Doran, P.T., Fountain, A.G., Wall, D.H.Moorhead, D.L. 2007. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research, 112 , 10.1029/2005JG000141.CrossRefGoogle Scholar
Borcard, D., Legendre, P.Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.CrossRefGoogle Scholar
Buck, C.F., Mayewski, P.A., Spencera, M.J., Whitlow, S., Twicklera, M.S.Barrett, D. 1992. Determination of major ions in snow and ice cores by ion chromatography. Journal of Chromatography, 594, 225228.CrossRefGoogle Scholar
Convey, P.Stevens, M.I. 2007. Antarctic biodiversity. Science, 317, 18771878.CrossRefGoogle ScholarPubMed
Douglas, M.S.V.Smol, J.P. 1994. Limnology of high Arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Archiv für Hydrobiologie, 131, 401434.CrossRefGoogle Scholar
Douglas, M.S.V., Smol, J.P.Blake, W. 1994. Marked post-18th century environmental change in high Arctic ecosystems. Science, 266, 416419.CrossRefGoogle ScholarPubMed
Ellis-Evans, J.C., Laybourn-Parry, J., Bayliss, P.R.Perriss, S.J. 1998. Physical, chemical and microbial community characteristics of lakes of the Larsermann Hills, continental Antarctica. Archiv für Hydrobiologie, 141, 209230.CrossRefGoogle Scholar
Gasparon, M., Lanyon, R., Burgess, J.S.Sigurdsson, I.A. 2002. The freshwater lakes of the Larsemann Hills, East Antarctica: chemical characteristics of the water column. ANARE Research Report, 147, 28 pp.Google Scholar
Gibson, J.A.E. 1999. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Science, 11, 175192.CrossRefGoogle Scholar
Gibson, J.A.E. 2010. Water levels of Deep Lake, Vestfold Hills. http://data.aad.gov.au/aadc/soe/display_indicator.cfm?soe_id=62, accessed 24 June 2010.Google Scholar
Gillieson, D., Burgess, J., Spate, A.Cochrane, A. 1990. An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica. ANARE Research Notes, 74, 173 pp.Google Scholar
Hodgson, D.A.Smol, J.P. 2008. High latitude palaeolimnology. In Vincent, W.F. & Laybourn-Parry, J., eds. Polar lakes and rivers: Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 4364.CrossRefGoogle Scholar
Hodgson, D.A., Vyverman, W.Sabbe, K. 2001. Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarctic Science, 13, 255270.CrossRefGoogle Scholar
Hodgson, D.A., Roberts, D., McMinn, A., Verleyen, E., Terry, B., Corbett, C.Vyverman, W. 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology, 36, 385406.Google Scholar
Hodgson, D.A., Verleyen, E., Sabbe, K., Squier, A.H., Keely, B.J., Leng, M.J., Saunders, K.M.Vyverman, W. 2005. Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quaternary Research, 64, 8399.CrossRefGoogle Scholar
Hodgson, D.A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P.R., Taton, A., Squier, A.H.Keely, B.J. 2004. Environmental factors influencing the pigment composition of in situ benthic microbial communities in East Antarctic lakes. Aquatic Microbial Ecology, 37, 247263.CrossRefGoogle Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McIntosh, W., Sands, C.J., Fernández-Carazo, R., Wilmotte, A., de Wever, A., Peeters, K., Tavernier, I.Willems, A. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82°South. Polar Science, 4, 197214.CrossRefGoogle Scholar
Imura, S., Bando, T., Saito, S., Seto, K.Kanda, H. 1999. Benthic moss pillars in Antarctic lakes. Polar Biology, 22, 137140.CrossRefGoogle Scholar
Kimura, S., Ban, S., Imura, S., Kudoh, S.Matsuzaki, M. 2009. Limnological characteristics of vertical structure in the lakes of Syowa Oasis, East Antarctica. Polar Science, 4, 262271.Google Scholar
Laybourn-Parry, J.Pearce, D.A. 2007. The biodiversity and ecology of Antarctic lakes: models for evolution. Philosophical Transactions of the Royal Society, B362, 22732289.CrossRefGoogle Scholar
Laybourn-Parry, J., Quayle, W.Henshaw, T. 2002. The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biology, 25, 542552.CrossRefGoogle Scholar
Lyons, W.B.Finlay, J.C. 2008. Biogeochemical processes in high-latitude lakes and rivers. In Vincent, W.F. & Laybourn-Parry, J., eds. Polar lakes and rivers: Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 137156.CrossRefGoogle Scholar
Monaghan, A.J., Bromwich, D.H., Fogt, R.L., Wang, S.H., Mayewski, P.A., Dixon, D.A., Ekaykin, A., Frezzotti, M., Goodwin, I., Isaksson, E., Kaspari, S.D., Morgan, V.I., Oerter, H., van Ommen, T.D., van der Veen, C.J.Wen, J.H. 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831.CrossRefGoogle ScholarPubMed
Nakada, M., Kimura, R., Okuno, J., Moriwaki, K., Miura, H.Maemoku, H. 2000. Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations. Marine Geology, 167, 85103.CrossRefGoogle Scholar
Phartiyal, B., Sharma, A.Bera, S.K. 2011. Glacial lakes and geomorphological evolution of Schirmacher Oasis, East Antarctica, during Late Quaternary. Quaternary International, 235, 128136.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C.Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645645.CrossRefGoogle ScholarPubMed
Quesada, A., Vincent, W.F., Kaup, E., Hobbie, J.E., Laurion, I., Pienitz, R., Lopez-Martinez, J.Duran, J.-J. 2006. Landscape control of high latitude lakes in a changing climate. In Bergstrom, D., Convey, P. & Huiskes, A., eds. Trends in Antarctic terrestrial and limnetic ecosystems. Dordrecht: Kluwer, 221251.CrossRefGoogle Scholar
Roberts, D.McMinn, A. 1996. Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science, 8, 331341.CrossRefGoogle Scholar
Rochera, C., Justel, A., Fernandez-Valiente, E., Banon, M., Rico, E., Toro, M., Camacho, A.Quesada, A. 2010. Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biology, 33, 16151628.CrossRefGoogle Scholar
Sabbe, K., Hodgson, D.A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K.Vyverman, W. 2004. Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology, 49, 296319.CrossRefGoogle Scholar
Schwab, M.J. 1998. Reconstruction of the Late Quaternary climatic and environmental history of the Schirmacher Oasis and the Wohlthat Massif (East Antarctica). Berichte zur Polarforschung, 293, 128 pp.Google Scholar
Smol, J.P.Douglas, M.S.V. 2007a. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences of the United States of America, 104, 12 39512 397.CrossRefGoogle ScholarPubMed
Smol, J.P.Douglas, M.S.V. 2007b. From controversy to consensus: making the case for recent climate using lake sediments. Frontiers in Ecology and the Environment, 5, 466474.CrossRefGoogle Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Ruhland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.A., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitoneni, S., Solovieva, N.Weckstrom, J. 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proceedings of the National Academy of Sciences of the United States of America, 102, 43974402.CrossRefGoogle ScholarPubMed
ter Braak, C.J.F.Šmilauer, P. 2002. CANOCO reference manual and user's guide to CANOCO for Windows: software for canonical community ordination (version 4). Ithaca, NY: Microcomputer Power, 351 pp.Google Scholar
Tominaga, H.Fukui, F. 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia, 81, 375389.CrossRefGoogle Scholar
Turner, J., Arthern, R., Bromwich, D., Marshall, G., Worby, T., Bockheim, J., di Prisco, G., Verde, C., Convey, P., Roscoe, H., Jones, A., Vaughan, D., Woodworth, P., Scambos, T., Cook, A., Lenton, A., Comiso, J., Gugliemin, M., Summerhayes, C., Meredith, M., Naveira-Garabato, A., Chown, S., Stevens, M., Adams, B., Worland, R., Hennion, F., Huiskes, A., Bergstrom, D., Hodgson, D.A., Bindschadler, R., Bargagli, R., Metzl, N., van der Veen, K., Monaghan, A., Speer, K., Rintoul, S., Hellmer, H., Jacobs, S., Heywood, K., Holland, D., Yamanouchi, T., Barbante, C., Bertler, N., Boutron, C., Hong, S., Mayewski, P., Fastook, J., Newsham, K., Robinson, S., Forcarda, J., Trathan, P., Smetacek, V., Gutt, J., Pörtner, H.-O., Peck, L., Gili, J.-M., Wiencke, C., Fahrbach, E., Atkinson, A., Webb, D., Isla, E., Orejas, C., Rossi, S.Shanklin, J. 2009. The instrumental period. In Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A. & Summerhayes, C.P., eds. Antarctic climate change and the environment. Cambridge: Scientific Committee for Antarctic Research, 183298.Google Scholar
Van Ommen, T.D.Morgan, V. 2010. Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nature Geoscience, 3, 267272.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Milne, G.A., Sabbe, K.Vyverman, W. 2005. Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quaternary Research, 63, 4552.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Vyverman, W., Roberts, D., McMinn, A., Vanhoutte, K.Sabbe, K. 2003. Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes. Journal of Paleolimnology, 30, 195215.CrossRefGoogle Scholar
Verleyen, E., Sabbe, K., Hodgson, D.A., Grubisic, S., Taton, A., Cousin, S., Wilmotte, A., De Wever, A., van der Gucht, K.Vyverman, W. 2010. Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquatic Microbial Ecology, 59, 1124.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., Cremer, H., Emslie, S.D., Gibson, J., Hall, B., Imura, S., Kudoh, S., Marshall, G.J., McMinn, A., Melles, M., Newman, L., Roberts, D., Roberts, S.J., Singh, S.M., Sterken, M., Tavernier, I., Verkulich, S., van de Vyver, E., van Nieuwenhuyze, W., Wagner, B.Vyverman, W. 2011. Post-glacial regional climate variability along the East Antarctic coastal margin: evidence from shallow marine and coastal terrestrial records. Earth Science Reviews, 104, 199212.CrossRefGoogle Scholar
Vincent, W.F.Laybourn-Parry, J. 2008. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 352 pp.CrossRefGoogle Scholar
Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D.A., Willems, A., Peeters, K., van de Vijver, B., De Wever, A.Sabbe, K. 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 4, 103113.CrossRefGoogle Scholar
Supplementary material: File

Verleyen Supplementary Figure

Figure S1. A subsample of lakes in the East Antarctic limnological dataset

Download Verleyen Supplementary Figure(File)
File 294.9 KB
Supplementary material: File

Verleyen Supplementary Table

Table S1: Limnological variables measured in the 127 East Antarctic lakes

Download Verleyen Supplementary Table(File)
File 52.2 KB