Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T20:45:30.781Z Has data issue: false hasContentIssue false

Antarctic blue ice areas - towards extracting palaeoclimate information

Published online by Cambridge University Press:  03 February 2010

Anna Sinisalo*
Affiliation:
Arctic Centre, PO Box 122, 96101 Rovaniemi, Finland
John C. Moore
Affiliation:
Arctic Centre, PO Box 122, 96101 Rovaniemi, Finland Thule Institute, University of Oulu, Finland College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Abstract

We review the current scientific knowledge about Antarctic Blue Ice Areas (BIAs) with emphasis on their application for palaeoclimate studies. Substantial progress has been made since the review by Bintanja (1999), in particular dating the archive of ancient ice found on the surface of BIAs has progressed with advances in 14C measurements, tephrachronology, and geomorphological evidence giving better constraints to more sophisticated ice flow models. Flow modelling also provides information about past changes in ice flow velocities, accumulation rates and ice sheet elevation. The availability of gas composition in vertical cores from BIAs allows matching to well-dated global records of greenhouse gas variability over the last glacial-interglacial cycle and longer. It is clear from the limited number of studies to date that BIAs from different regions have quite different histories of formation and preservation, and that they are intimately linked to the response of their surrounding ice sheets to climate variability on glacial-interglacial time-scales. Looking to the future, climate records from BIAs are expected to provide information on variations in Southern Ocean processes as well as ice sheet evolution within the East Antarctic ice sheet at the thermal transition from cold based to warm based ice.

Type
Review
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current affiliation: University of Oslo, Department of Geosciences, Norway

References

Azuma, N., Nakawo, M., Higashi, A.Nishio, F. 1985. Flow pattern near Massif A in the Yamato bare ice field estimated from the structures and the mechanical properties of a shallow ice core. Memoirs of National Institute of Polar Research, Special Issue, 39, 173183.Google Scholar
Bintanja, R. 1999. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37, 337359.CrossRefGoogle Scholar
Bintanja, R.Reijmer, C.H. 2001. Meteorological conditions over Antarctic blue-ice areas and their influence on the local surface mass balance. Journal of Glaciology, 47, 3750.CrossRefGoogle Scholar
Bintanja, R.van den Broeke, M.R. 1995a. The climate sensitivity of Antarctic blue ice areas. Annals of Glaciology, 21, 157191.CrossRefGoogle Scholar
Bintanja, R.van den Broeke, M.R. 1995b. The surface energy balance of Antarctic snow and blue ice. Journal of Applied Meteorology, 34, 902926.2.0.CO;2>CrossRefGoogle Scholar
Bintanja, R., Jonsson, S.Knap, W.H. 1997. The annual cycle of the surface energy balance of Antarctic blue ice. Journal of Geophysical Research, 102, 18671881.CrossRefGoogle Scholar
Bintanja, R., Reijmer, C.H.Hulscher, S.J.M.H. 2001. Detailed observations of the rippled surface of Antarctic blue-ice areas. Journal of Glaciology, 47, 387396.CrossRefGoogle Scholar
Blunier, T.Brook, E.J. 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109112.CrossRefGoogle ScholarPubMed
Brown, I.C.Scambos, T.A. 2004. Satellite monitoring of blue-ice extent near Byrd Glacier, Antarctica. Annals of Glaciology, 39, 223230.CrossRefGoogle Scholar
Cassidy, W.A., Olsen, E.Yanai, K. 1977. Antarctica: a deep-freeze storehouse for meteorites. Science, 198, 727.CrossRefGoogle Scholar
Cassidy, W., Harvey, R., Schutt, J., Delisle, G.Yanai, K. 1992. The meteorite collection sites of Antarctica. Meteoritics, 27, 490525.CrossRefGoogle Scholar
Coren, F., Delisle, G.Sterzai, P. 2003. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry. Meteoritics and Planetary Science, 38, 13191330.CrossRefGoogle Scholar
Corti, G., Zeoli, A.Bonini, M. 2003. Ice-flow dynamics and meteorite collection in Antarctica. Earth and Planetary Science Letters, 215, 371378.CrossRefGoogle Scholar
Corti, G., Zeoli, A., Belmaggio, P.Folco, L. 2008. Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica. Journal of Geophysical Research, 113, 10.1029/2006JF000708.CrossRefGoogle Scholar
Crary, A.P.Wilson, C.R. 1961. Formation of “blue” glacier ice by horizontal compressive forces. Journal of Glaciology, 3, 10451050.CrossRefGoogle Scholar
Custer, S.E. 2006. Eemian records of ∂ 18Oatm and CH4 correlated to the Vostok EGT4 timescale from the Moulton blue ice field, West Antarctica. BSc thesis, Pennsylvania State University, 46 pp. Available at: http://www.geosc.psu.edu/undergrads/documents/documents/StantonCusterthesis.pdf.Google Scholar
Delisle, G. 1993. Global change, Antarctic meteorite traps and the East Antarctic ice sheet. Journal of Glaciology, 39, 397408.CrossRefGoogle Scholar
Delisle, G.Sievers, J. 1991. Sub-ice topography and meteorite finds near the Allan Hills and the Near Western Icefield, Victoria Land, Antarctica. Journal of Geophysical Research, 96, 15 57715 587.CrossRefGoogle Scholar
Dunbar, N.W., Mcintosh, W.C.Esser, R.P. 2008. Physical setting and tephrochonology of the summit caldera ice record at Mt. Moulton, West Antarctica. Geological Society of America Bulletin, 120, 796812.CrossRefGoogle Scholar
Epica Community Members. 2006. One-to-one hemispheric coupling of millennial polar climate variability during the last glacial. Nature, 444, 195198.CrossRefGoogle Scholar
Faure, G.Buchanan, D. 1991. Ablation rates of the ice fields in the vicinity of the Allan Hills, Victoria Land, Antarctica. Antarctic Research Series, 53, 1931.Google Scholar
Fireman, E.L. 1986. Uranium-series dating of Allan Hills ice. Journal of Geophysical Research, 91, D539D544 (correction Journal of Geophysical Research, 91, 8393).CrossRefGoogle Scholar
Fireman, E.L.Norris, T.L. 1982. Ages and composition of gas trapped in Allan Hills and Byrd core ice. Earth and Planetary Science Letters, 60, 339350.CrossRefGoogle Scholar
Giaever, J. 1954. The white desert: the official account of the Norwegian-British-Swedish Antarctic Expedition. London: Chatto & Windus, 304 pp.Google Scholar
Goldstein, S.J., Murrell, M.T., Nishiizumi, K.Nunn, A.J. 2004. Uranium-series chronology and cosmogenic 10Be-36Cl record of Antarctic ice. Chemical Geology, 204, 125143.CrossRefGoogle Scholar
Grinsted, A., Moore, J.C., Spikes, V.Sinisalo, A. 2003. Dating Antarctic blue ice areas using a novel ice flow model. Geophysical Research Letters, 30, 10.1029/2003GL017957.CrossRefGoogle Scholar
Hammer, C.U., Clausen, H.B.Dansgaard, W. 1980. Greenland ice sheet evidence of post-glacial volcanism and its climate impact. Nature, 288, 230.CrossRefGoogle Scholar
Harvey, R.P. 2003. The origin and significance of Antarctic meteorites. Chemie der Erde, 63, 93147.CrossRefGoogle Scholar
Hättestrand, C.Johansen, N. 2005. Supraglacial moraines in Scharffenbergbotnen, Heimefrontfjella, Dronning Maud Land, Antarctica – significance for reconstructing former blue ice areas. Antarctic Science, 17, 225236.CrossRefGoogle Scholar
Hodson, A.J., Mumford, P.N., Kohler, J.Wynn, P.M. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry, 72, 233256.CrossRefGoogle Scholar
Huss, G.R. 1990. Meteorite infall as a function of mass: implications for the accumulation of meteorites on Antarctic ice. Meteoritics, 25, 4156.CrossRefGoogle Scholar
Jenk, T.M., Szidat, S., Schwikowski, M., Gaeggeler, H.W., Wacker, L., Synal, H.-A.Saurer, M. 2007. Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments and Methods in Physics Research, B259, 518525.CrossRefGoogle Scholar
Jenk, T.M., Szidat, S., Schwikowski, M., Gaeggeler, H.W., Brütsch, S., Wacker, L., Synal, H.-A.Saurer, M. 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmospheric Chemistry and Physics, 6, 53815390.CrossRefGoogle Scholar
Jonsson, S. 1992. Local climate and mass balance of a blue-ice area in western Dronning Maud Land, Antarctica. Zeitschrift für Gletscherkunde und Glazialgeologie, 26, 1129.Google Scholar
Jouzel, J., Raisbeck, G., Benoist, J.P., Yiou, F., Lorius, C., Raynaud, D., Petit, J.R., Barkov, N.I., Korotkevitch, Y.S.Kotlyakov, V.M. 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quaternary Research, 31, 135150.CrossRefGoogle Scholar
Kawamura, K., Nakazawa, T., Aoki, S., Sugawara, S., Fujii, Y.Watanabe, O. 2003. Atmospheric CO2 variations over the last three glacial-interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique. Tellus, B55, 126137.Google Scholar
Kekonen, T., Moore, J.C., Perämäki, P.Martma, T. 2005. The Icelandic Laki volcanic tephra layer in the Lomonosovfonna ice core, Svalbard. Polar Research, 24, 3340.CrossRefGoogle Scholar
Koeberl, C. 1990. Dust bands in blue ice fields in Antarctica and their relationship to meteorites and ice. In Cassidy, W.A.&Whillans, I.M., eds. Workshop on Antarctic meteorite stranding surfaces: A Lunar and Planetary Institute Workshop held 13–15, 1988, at the University of Pittsburgh. LPI Technical Report 90–03. Houston, TX: Lunar and Planetary Institute, 70 pp.Google Scholar
Koeberl, C., Yanai, K., Cassidy, W.A.Schutt, J.W. 1988. Investigation of dust bands from blue ice fields in the Lewis Cliff (Beardmore) area, Antarctica: a progress report. Proceedings of NIPR Symposium on Antarctic Meteorology, 1, 291309.Google Scholar
Legrand, M.Mayewski, P. 1997. Glaciochemistry of polar icecores: a review. Reviews of Geophysics, 35, 219243.CrossRefGoogle Scholar
Liston, G.E.Winther, J.G. 2005. Antarctic surface and subsurface snow and ice melt fluxes. Journal of Climate, 18, 14691481.CrossRefGoogle Scholar
Lythe, M.B., Vaughan, D.G. & The BEDMAP Consortium 2001. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106, 11 33511 351.CrossRefGoogle Scholar
Machida, T., Nakazawa, T., Narita, H., Fujii, Y., Aoki, S.Watanabe, O. 1996. Variations and the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, South Yamato. Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 10, 5565.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V.I., Delmotte, M., Ciais, P., Hammer, C.U., Johnsen, S.J., Lipenkov, V.Y., Thompson, E.M., Petit, J.-R., Steig, E.J., Stievenard, M.Vaikmae, R. 2000. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54, 348358.CrossRefGoogle Scholar
Mellor, M.Swithinbank, C. 1989. Airfields on Antarctic glacier ice. CRREL Report, 89–21.Google Scholar
Moore, J.C., Nishio, F., Fujita, S., Narita, H., Pasteur, E., Grinsted, A., Sinisalo, A.Maeno, N. 2006. Interpreting ancient ice in a shallow ice core from the South Yamato (Antarctica) blue ice area using flow modeling and compositional matching to deep ice cores. Journal of Geophysical Research, 111, 10.1029/2005JD006343.CrossRefGoogle Scholar
Morgan, V.I., Wookey, C.W., Li, J., van Ommen, T.D., Skinner, W.Fitzpatrick, M.F. 1997. Site information and initial results from deep ice drilling on Law Dome. Journal of Glaciology, 43, 310.CrossRefGoogle Scholar
Nakawo, M., Nagoshi, M.Mae, S. 1988. Stratigraphic record of an ice core from the Yamato meteorite ice field, Antarctica. Annals of Glaciology, 10, 126129.CrossRefGoogle Scholar
Nakamura, T., Imae, N.Nakai, I., et al. 1999. Antarctic micrometeorites collected at the Dome Fuji Station. Antarctic Meteorite Research, 12, 183198.Google Scholar
Naruse, R.Hashimoto, M. 1982. Internal flow lines in the ice sheet upstream of the Yamato Mountains, East Antarctica. Memoirs of National Institute of Polar Research, Special Issue, 24, 201203.Google Scholar
Näslund, J.O., Fastook, J.L.Holmlund, P. 2000. Numerical modeling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates. Journal of Glaciology, 46, 5466.CrossRefGoogle Scholar
Nishiizumi, K., Elmore, D.Kubik, P.W. 1989. Update on terrestrial ages of Antarctic meteorites. Earth Planetary Science Letters, 93, 299313.CrossRefGoogle Scholar
Nishiizumi, K., Arnold, L.R., Elmore, D., Ferraro, R.D., Gove, H.E., Finkel, R.C., Beukens, R.P., Chang, K.H.Kilius, L.R. 1979. Measurements of 36CL in Antarctic meteorites and Antarctic ice using a Van de Graaff accelerator. Earth Planetary Science Letters, 45, 285292.CrossRefGoogle Scholar
Nishio, F., Katsushima, T.Ohmae, H. 1985. Volcanic ash layers in bare ice areas near the Yamato Mountains, Dronning Maud Land and the Allan Hills, Victoria Land, Antarctica. Annals of Glaciology, 7, 3441.CrossRefGoogle Scholar
Nishio, F., Katsushima, T., Ohmae, H., Ishikawa, M.Takahashi, S. 1984. Dirt layers and atmospheric transportation of volcanic glass in the bare ice areas near the Yamato Mountains in Queen Maud Land and the Allan Hills in Victoria Land, Antarctica. Memoirs of National Institute of Polar Research, Special Issue, 34, 160173.Google Scholar
Nye, J.F. 1963. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. Journal of Glaciology, 4, 785788.CrossRefGoogle Scholar
Orheim, O.Lucchitta, B. 1990. Investigating climate change by digital analysis of blue ice extent on satellite images of Antarctica. Annals of Glaciology, 14, 211215.CrossRefGoogle Scholar
Palais, J.M., Germani, M.S.Zielinski, G.A. 1992. Inter-hemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets. Geophysical Research Letters, 19, 801804.CrossRefGoogle Scholar
Paterson, W.S.B. 1994. The physics of glaciers, 3rd ed. Oxford: Pergamon, 480 pp.Google Scholar
Pattyn, F. 1999. The variability of Antarctic ice-sheet response to the climatic signal. Annals of Glaciology, 29, 273278.CrossRefGoogle Scholar
Pattyn, F.Decleir, H. 1998. Ice dynamics near Antarctic marginal mountain ranges: implications for interpreting the glacial-geological evidence. Annals of Glaciology, 27, 327332.CrossRefGoogle Scholar
Perchiazzi, N., Folco, L.Mellini, M. 1999. Volcanic ash bands in the Frontier Mountain and Lichen Hills blue-ice fields, northern Victoria Land. Antarctic Science, 11, 353361.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotiyakov, V.M., Legrand, M.Stievenard, M. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J.Weyhenmeyer, C.E. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr bp. Radiocarbon, 46, 10291058.Google Scholar
Ritz, C., Rommelaere, V.Dumas, C. 2001. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region. Journal of Geophysical Research, 106, 31 94331 964.CrossRefGoogle Scholar
Robock, A.Free, M.P. 1995. Ice cores as an index of global volcanism from 1850 to the present. Journal of Geophysical Research, 100, 11 54911 567.CrossRefGoogle Scholar
Scherer, P., Schultz, L., Neupert, U., Knauer, M., Neumann, S., Leya, I., Michel, R., Mokos, J., Lipschutz, M.E., Metzler, K., Suter, M.Kubik, P.W. 1997. Allan Hills 88019: an Antarctic H-chondrite with a very long terrestrial age. Meteoritics & Planetary Science, 32, 769773.CrossRefGoogle Scholar
Schmalholz, S.M., Schmid, D.W.Fletcher, R.C. 2008. Evolution of pinch-and-swell structures in a power-law layer. Journal of Structural Geology, 30, 649663.CrossRefGoogle Scholar
Schultz, L., Annexstad, J.O.Delisle, G. 1990. Ice movement and mass balance at the Allan Hills icefield. Antarctic Journal of the United States, 25(5), 9495.Google Scholar
Schytt, V. 1961. Glaciology IIE. Blue ice fields, moraine features and glacier fluctuations. Norwegian-British-Swedish Antarctic Expedition, 1949–52, Scientific Results, IVE, 183204.Google Scholar
Siegert, M.J., Hindmarsh, R.C.A.Hamilton, G.S. 2003. Evidence for a large surface ablation zone in central East Antarctica during the last ice age. Quaternary Research, 59, 114121.CrossRefGoogle Scholar
Sinisalo, A. 2007. Geophysical exploration of Antarctic blue ice areas for paleoclimate applications. PhD thesis, University of Oulu, Arctic Centre, Report Series 51, 102 pp.Google Scholar
Sinisalo, A., Grinsted, A.Moore, J.C. 2004. Dynamics of the Scharffenbergbotnen blue-ice area, Dronning Maud Land, Antarctica. Annals of Glaciology, 39, 417423.CrossRefGoogle Scholar
Sinisalo, A., Grinsted, A., Moore, J.C., Meijer, H.A.J., Martma, T.van De Wal, R.S.W. 2007. Inferences from stable water isotopes on the Holocene evolution of Scharffenbergbotnen blue ice area, East Antarctica. Journal of Glaciology, 53, 427434.CrossRefGoogle Scholar
Sowers, T., Alley, R.B.Jubenville, J. 2003. Ice core records of atmospheric N2O covering the last 106,000 years. Science, 301, 945948.CrossRefGoogle Scholar
Spikes, V.B. 2000. Laser altimetry, mass balance, and meteorites: A two part study of ice streams and blue ice. MSc thesis, The Ohio State University, 86 pp. [Unpublished].Google Scholar
Takahashi, S., Ageta, Y., Fujii, Y.Watanabe, O. 1994. Surface mass balance in east Dronning Maud Land, Antarctica, observed by Japanese Antarctic Research Expeditions. Annals of Glaciology, 20, 242248.CrossRefGoogle Scholar
Takahashi, S., Endoh, T., Azuma, N.Meshida, S. 1992. Bare ice fields developed in the inland part of Antarctica. Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 5, 128139.Google Scholar
Takeuchi, N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbancy and the organic matter contained in the cryoconite. Annals of Glaciology, 34, 409414.CrossRefGoogle Scholar
Taylor, K.C., Alley, R.B., Meese, D.A., Spencer, M.K., Brook, E.J., Dunbar, N.W., Finkel, R., Gow, A.J., Kurbatov, A.V., Lamorey, G.W., Mayewski, P.A., Meyerson, E., Nishiizumi, K.Zielinski, G.A. 2004. Dating the Siple Dome, Antarctica ice core by manual and computer interpretation of annual layering. Journal of Glaciology, 50, 453461.CrossRefGoogle Scholar
Van den Broeke, M.R.Bintanja, R. 1995. The interaction of katabatic wind and the formation of blue ice areas in East Antarctica. Journal of Glaciology, 41, 395407.CrossRefGoogle Scholar
Van der Kemp, W.J.M., Alderliesten, C., van der Borg, K., de Jong, A.F.M., Lamers, R.A.N., Oerlemans, J., Thomassen, M.van de Wal, R.S.W. 2002. In situ produced 14C by cosmic ray muons in ablating Antarctic ice. Tellus, 54B, 186192.CrossRefGoogle Scholar
Van Roijen, J.J. 1996. Determination of ages and specific mass balances from 14C measurements on Antarctic surface ice. PhD thesis, Faculty of Physics and Astronomy, Utrecht University, 118 pp. [Unpublished].Google Scholar
Van Roijen, J.J., van der Borg, K., de Jong, A.F.M.Oerlemans, J. 1995. Ages, ablation and accumulation rates from 14C measurements on Antarctic ice. Annals of Glaciology, 2, 139143.CrossRefGoogle Scholar
Van Roijen, J.J., Bintanja, R., van der Borg, K., van den Broeke, M.R., de Jong, A.F.M.Oerlemans, J. 1994. Dry extraction of 14CO2 and 14CO from Antarctic ice. Nuclear Instruments and Methods in Physics Research, B92, 331334.CrossRefGoogle Scholar
Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H.Yoshida, N. 2003b. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature, 422, 509512.CrossRefGoogle ScholarPubMed
Watanabe, O., Kamiyama, K., Motoyama, H., Fujii, Y., Igarashi, M., Furukawa, T., Goto-Azuma, K., Saito, T., Kanamori, S., Kanamori, N., Yoshida, N.Uemura, R. 2003a. General tendencies of stable isotopes and major chemical constituents of the Dome Fuji deep ice core. Memoirs of National Institute of Polar Research, Special Issue, 57, 124.Google Scholar
Weller, G.E. 1968. The heat budget and heat transfer processes in Antarctic plateau ice and sea ice. ANARE Scientific Reports, A102, 95 pp.Google Scholar
Welten, K.C., Nishiizumi, K.Caffee, M.W. 2000. Update on terrestrial ages of Antarctic meteorites. Lunar and Planetary Science, XXXI, available at: http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2077.pdf.Google Scholar
Welten, K.C., Lindner, L., van der Borg, K., Loeken, T., Schultz, L., Romstedt, J.Metzler, K. 1995. Antarctic meteorites with unusual exposure and terrestrial histories. Meteoritics, 30, 598.Google Scholar
Whillans, I.M.Cassidy, W.A. 1983. Catch a falling star; meteorites and old ice. Science, 222, 5557.CrossRefGoogle ScholarPubMed
Wilch, T.I., Mcintosh, W.C.Dunbar, N.W. 1999. Late quaternary volcanic activity in Marie Byrd Land: potential 40Ar/39Ar dated time horizons in West Antarctic ice and marine cores. Geological Society of America Bulletin, 111, 15631580.2.3.CO;2>CrossRefGoogle Scholar
Winther, J.-G., Jespersen, M.N.Liston, G.E. 2001. Blue-ice areas in Antarctic derived from NOAA AVHRR satellite data. Journal of Glaciology, 47, 325334.CrossRefGoogle Scholar
Yokoyama, K. 1976. Geomorphological and glaciological survey of the Minami-Yamato nunataks and Kabuto nunatak, East Antarctica. Antarctic Record, 56, 1419.Google Scholar
Yoshida, M., Ando, H., Omoto, K., Naruse, R.Ageta, Y. 1971. Discovery of meteorites near Yamato Mountains, East Antartica. Antarctic Record, 39, 6265.Google Scholar
Zielinski, G. 1995. Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the GISP2 Greenland ice core. Journal of Geophysical Research, 100, 20 93720 955.CrossRefGoogle Scholar