Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:18:03.942Z Has data issue: false hasContentIssue false

Alkanes and polycyclic aromatic hydrocarbons in marine surficial sediment near Antarctic stations at Fildes Peninsula, King George Island

Published online by Cambridge University Press:  01 September 2011

Margarita Préndez*
Affiliation:
Departamento de Química Orgánica y Fisicoquímica, Laboratorio de Química de la Atmósfera, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Independencia, Santiago, Chile
Carolina Barra
Affiliation:
Departamento de Química Orgánica y Fisicoquímica, Laboratorio de Química de la Atmósfera, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Independencia, Santiago, Chile
Carla Toledo
Affiliation:
Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Independencia, Santiago, Chile
Pablo Richter
Affiliation:
Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Independencia, Santiago, Chile

Abstract

Alkanes and polycyclic aromatic hydrocarbons were quantified in samples of coastal sediments along Fildes Peninsula, King George Island, South Shetland Islands, Antarctica, during the summers of 2005 and 2007. Quantification was done by using GC-MS and applying the EPA 3550B method. Individual polycyclic aromatic hydrocarbon (PAHs) concentrations were below 14.4 ng g-1 dry wt in 2005 and below 88.7 ng g-1 dry wt in 2007. Alkanes concentrations were higher than those of PAHs and ranged from 8 to 2236 ng g-1 dry wt in 2005 and from 53 to 745 ng g-1 dry wt in 2007. Results of total PAHs and alkanes were integrated along with base administrative and geographic maps in a GIS environment to determine the geographic extent of hydrocarbons detected. The largest concentrations were found in areas near research stations where total n-alkanes suggest petrogenic sources and where some diagnostic ratios suggest the presence of some PAHs produced by pyrogenic processes. Even if concentrations of hydrocarbons are low, they seem to be a result of increases in scientific activities, in the activities of the stable population, in the number of tourists, or a combination of theses factors.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ATCP (Antarctic Treaty Consultative Parties). 1991. Management Plan for Antarctic Specially Protected Area No. 125 Fildes Peninsula, King George Island (25 de Mayo). Recommendation XVI-2. http://www.ats.aq/documents/recatt/Att424_e.pdfGoogle Scholar
Bargagli, R. 2008. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212226.CrossRefGoogle ScholarPubMed
Bícego, M.C., Zanardi-Lamardo, E., Taniguchi, S., Martins, C.C., Da Silva, D.A.M., Sasaki, S.T., Albergaria-Barbosa, A.C.R., Paolo, F.S., Weber, R.R.Montone, R.C. 2009. Results from a 15-year study on hydrocarbon concentrations in water and sediment from Admiralty Bay, King George Island, Antarctica. Antarctic Science, 21, 209220.CrossRefGoogle Scholar
Buchman, M.F. 1999. NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99-1. Seattle, WA: Coastal Protection and Restoration Division, National Oceanic Atmospheric Administration. Available at: http://response.restoration.noaa.gov/book_shelf/122_squirt_cards.pdfGoogle Scholar
Burgess, J.S., Spate, A.P.Norman, F.I. 1992. Environmental impacts of station development in the Larsemann Hills, Princess Elizabeth Land, Antarctica. Journal of Environmental Management, 26, 287299.CrossRefGoogle Scholar
Cripps, G.C.Priddle, J. 1991. Review: hydrocarbons in the Antarctic marine environment. Antarctic Science, 3, 233250.CrossRefGoogle Scholar
Cripps, G.C.Shears, J. 1997. The fate in the marine environment of a minor diesel fuel spill from an Antarctic research station. Environmental Monitoring and Assessment, 46, 221232.CrossRefGoogle Scholar
Curtosi, A., Pelletier, E., Vodopivez, C.L.Mac Cormack, W.P. 2007. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica): role of permafrost as a low-permeability barrier. Science of the Total Environment, 383, 193204.CrossRefGoogle ScholarPubMed
Deprez, P.P., Arens, M.Locher, H. 1999. Identification and assessment of contaminated sites at Casey Station, Wilkes Land, Antarctica. Polar Record, 35, 299316.CrossRefGoogle Scholar
Dvorská, A., Lammel, G.Klánová, J. 2011. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45, 420427.CrossRefGoogle Scholar
GERG (Geochemical And Environmental Research Group). 2000. Antarctic Environmental Monitoring Handbook: standard techniques for monitoring in Antarctica. Hobart, TAS: COMNAP/SCAR, 218 pp.Google Scholar
IGM. 2007. Cartographic Survey and Geographic Information System of the South Shetland Islands. Santiago, Chile: Instituto Geográfico Militar-Instituto Antártico Chileno. Project No 153.Google Scholar
Kennicutt II, M.C., McDonald, T.J., Denoux, G.J.McDonald, S.J. 1992. Hydrocarbons contamination on the Antarctic Peninsula: I. Arthur Harbor subtidal sediments. Marine Pollution Bulletin, 24, 499506.CrossRefGoogle Scholar
Kim, M., Kennicutt II, M.C.Qian, Y. 2006. Molecular and stable carbon isotopic characterization of PAHS contaminants at McMurdo Station, Antarctica. Marine Pollution Bulletin, 52, 15851590.CrossRefGoogle ScholarPubMed
Klánová, J., Matykiewiczová, N., Mácka, Z., Prosek, P., Láska, K.Klán, P. 2007. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution, 10.1016/j.envpol.2007.06.026.Google Scholar
Krzyszowska, A. 1990. The content of fuel oil in soil and effect of sewage on water nearby the H. Arctowski Polish Antarctic Station (King George Island). Polish Archives of Hydrobiology, 37, 313326.Google Scholar
Liggett, D., McIntosh, A., Thompson, A., Gilbert, N.Storey, B. 2010. From frozen continent to tourism hotspot? Five decades of Antarctic tourism development and management, and a glimpse into the future. Tourism Management, 30, 110.Google Scholar
Liu, Y., Chen, L., Jianfu, Z., Qinghui, H., Zhiliang, Z.Hongwen, G. 2008. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environmental Pollution, 154, 298305.CrossRefGoogle Scholar
Marín, V.Delgado, L. 1999. La Antártica. Santiago, Chile: Editorial Universitaria, 90 pp.Google Scholar
Martins, C.C., Bícego, M.C., Taniguchi, S.Montone, R.C. 2004. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Science, 16, 117122.CrossRefGoogle Scholar
Martins, C.C., Bícego, M.C., Rose, N.L., Taniguchi, S., Lourenço, R.A., Figueira, R.C.L., Mahiques, M.M.Montone, R.C. 2010. Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environmental Pollution, 158, 192200.CrossRefGoogle Scholar
Notar, M., Leskovsek, H.Faganeli, J. 2001. Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Trieste, northern Adriatic Sea. Marine Pollution Bulletin, 42, 3644.CrossRefGoogle ScholarPubMed
Pearce, F. 1995. Oil leaks in Antarctic stall talks. New Scientist, 1925, 5.Google Scholar
Pourchet, M., Magand, O., Frezzotti, M., Ekaykin, A.Winther, J.G. 2003. Radionuclides deposition over Antarctica. Journal of Environmental Radioactivity, 68, 137158.CrossRefGoogle ScholarPubMed
Rakusa-Suszczewski, S. 1995. The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctic). Polish Polar Research, 16, 6170.Google Scholar
Raymundo, C.C.Preston, M.R. 1992. The distribution of linear alkylbenzenes in coastal and estuarine sediments of western North Sea. Marine Pollution Bulletin, 24, 138146.CrossRefGoogle Scholar
Revill, A., Snape, I.Guille, D. 2007. Constraints on transport and weathering of petroleum contamination at Casey Station, Antarctica. Cold Regions Science and Technology, 48, 154167.CrossRefGoogle Scholar
Sánchez-García, L. 2007. Caracterización geoquímica de sedimentos marinos del golfo de Cádiz e implicaciones ambientales: distribución y composición molecular de lípidos y formas refractarias de la materia orgánica. PhD thesis, Universidad Autónoma de Madrid. [Unpublished].Google Scholar
Sienra, M.R., Rosazza, N.G.Préndez, M. 2005. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75, 267281.CrossRefGoogle Scholar
Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A., Pfeiffer, S., Scott, J.Snape, I. 2009. Impacts of local human activities on the Antarctic environment: a review. Antarctic Science, 21, 333.CrossRefGoogle Scholar
Tubertini, O., Bettoli, M.G., Cantelli, L., Tositti, L., Valcher, S., Triulzi, C., Marzano, F.N., Mori, A., Vaghi, M., Sbrignadello, G., Degetto, S.Faggin, M. 1995. Italian Antarctic Research Program: environmental radioactivity survey around the Italian base (1987–1991) Terra Nova Bay - Ross Sea region. Journal of Environmental Radioactivity, 28, 3541.CrossRefGoogle Scholar
Tumeo, M.A.Wolk, A.E. 1994. Assessment of the presence of oil-degrading microbes at McMurdo Station. Antarctic Journal of the United States, 29(5), 375377.Google Scholar
USEPA (United States Environmental Protection Agency). 1996. Method 3050B: acid digestion of sediments, sludges, and soils, revision 2 (December 1996). Washington, DC. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3050b.pdf, accessed 15 May 2008.Google Scholar
Volkman, J.K., Holdsworth, D.G., Neil, G.P.JrBavor, H.J., 1992. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. The Science of the Total Environment, 112, 203219.CrossRefGoogle ScholarPubMed
Wakeham, S.G. 1996. Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments. Marine Chemistry, 53, 187205.CrossRefGoogle Scholar
Wang, Z., Fingas, M.Page, D. 1999. Oil spill identification. Journal of Chromatography, 843, 369411.CrossRefGoogle Scholar
WMO (World Meteorological Organization). 1991. Scientific Assessment of Stratospheric Ozone No 25. Geneva: UNEP/WMO.Google Scholar
Yunker, M., Macdonald, R., Vingarzan, R., Reginald, R., Goyette, D.Sylvestre, S. 2002. PAHs in the Fraser River basin: a critical appraisal of PAHS ratios as indicators of PAHS source and composition. Organic Geochemistry, 33, 489515.CrossRefGoogle Scholar