Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T17:21:26.884Z Has data issue: false hasContentIssue false

LANGUAGE AND WILLIAMS SYNDROME

Published online by Cambridge University Press:  01 March 2008

Abstract

Most aspects of human life—from gene expression, to brain structure/function, to underlying linguistic and cognitive processes, through to overt language production and comprehension behaviors—are the result of dynamic developmental processes, in which timing plays a crucial role. So, the study of language acquisition in developmental disorders such as Williams syndrome (WS) needs to change from the still widely held view that developmental disorders can be accounted for in terms of spared versus impaired modules to one that takes serious account of the fact that the infant cortex passes from an initial state of high regional interconnectivity to a subsequent state of progressively increasing specialization and localization of functional brain networks. With such early interconnectivity in mind, developmental neuroscientists must explore the possibility that a small perturbation in low-level processes in one part of the brain very early in development can result in serious deficits in higher-level processes in another part of the brain later in development. Therefore, in profiling developmental disorders of language such as in WS, it is vital to start in early infancy, from which to trace the full trajectory of the interactions of language and other cognitive processes across infancy, toddlerhood, and childhood, through to adolescence and adulthood.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

OTHER REFERENCES

Clahsen, H., & Almazan, M. (1998). Syntax and morphology in Williams syndrome. Cognition, 68, 167198.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2 (10), 389398.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Thomas, M., Annaz, D., Humphreys, K., Ewing, S., Brace, N., et al. (2004). Exploring the Williams syndrome face processing debate: The importance of building developmental trajectories. Journal of Child Psychology and Psychiatry, 45 (7), 12581274.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.CrossRefGoogle ScholarPubMed
Annaz, D. (2006). The development of visuo-spatial processing in children with autism, Down syndrome and Williams syndrome. Unpublished doctoral dissertation, Birkbeck College, University of London.Google Scholar
Annaz, D., Karmiloff-Smith, A., & Thomas, M. C. (2008). The importance of tracing developmental trajectories for clinical child neuropsychology. In Reed, J. & Warner Rogers, J. (Eds.), Child neuropsychology: Concepts, theory and practice.Google Scholar
Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development, Trends in the Cognitive Sciences, 6 (12), 511516.CrossRefGoogle ScholarPubMed
Bello, A., Capirci, O., & Volterra, V. (2004). Lexical production in children with Williams syndrome: Spontaneous use of gesture in a naming task. Neuropsychologia, 42, 201213.CrossRefGoogle Scholar
Bellugi, U., Wang, P. P., & Jernigan, T. L. (1994). Williams syndrome: An unusual neuropsychological profile. In Broman, S. & Grafman, J. (Eds.), Atypical cognitive deficits in developmental disorders: Implications for brain function (pp. 2356). Hillsdale, NJ: Erlbaum.Google Scholar
Beuren, A. J., Apitz, J., & Harmjanz, D. (1962). Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation, 26, 12351240.CrossRefGoogle Scholar
Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13, 28012820.CrossRefGoogle ScholarPubMed
Brock, J. (2007). Language abilities in Williams syndrome: A critical review, Developmental Psychopathology, 19 (1), 97127.CrossRefGoogle ScholarPubMed
Brown, J., Johnson, M. H., Paterson, S., Gilmore, R., Gsödl, M., Longhi, E., et al. (2003). Spatial representation and attention in toddlers with Williams syndrome and Down syndrome. Neuropsychologia, 41, 10371046.CrossRefGoogle ScholarPubMed
Casey, B. J., Giedd, J., & Thomas, K. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54 (1–3), 241257.CrossRefGoogle ScholarPubMed
Clahsen, H., & Almazan, M. (1998). Syntax and morphology in Williams syndrome. Cognition, 68 (3), 167198.CrossRefGoogle ScholarPubMed
Clahsen, H., & Almazan, M. (2001). Compounding and inflection in language impairment: Evidence from Williams syndrome (and SLI). Lingua, 111, 729757.CrossRefGoogle Scholar
Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irvin, S. A., Weiler, I. J., et al. (1997). Abnormal dendritic spines in fragile-X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences USA, 94, 54015404.CrossRefGoogle ScholarPubMed
Eckert, M. A., Hu, D., Eliez, S., Bellugi, U., Galaburda, A., Korenberg, J., et al. (2005). Evidence for superior parietal impairment in Williams syndrome. Neurology, 64, 152153.CrossRefGoogle ScholarPubMed
Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.Google Scholar
Donnai, D., & Karmiloff-Smith, A. (2000). Williams syndrome: From genotype through to the cognitive phenotype. American Journal of Medical Genetics, 97 (2), 164171.3.0.CO;2-F>CrossRefGoogle Scholar
Galaburda, A. M., Holinger, D. P., Bellugi, U., & Sherman, G. F. (2002). Williams syndrome: Neuronal size and neuronal-packing density in primary visual cortex. Archive of Neurology, 59 (9), 14611467.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. (1987). Development of cortical circuitry and cognitive function. Child Development, 58 (3), 601622.CrossRefGoogle ScholarPubMed
Gopnik, M. (1990). Genetic basis of grammar defect. Nature, 346, 6.Google Scholar
Grant, J., Karmiloff-Smith, A., Gathercole, S. A., Paterson, S., Howlin, P., Davies, M., et al. (1997). Phonological short-term memory and its relationship to language in Williams syndrome. Cognitive Neuropsychiatry, 2 (2), 8199.CrossRefGoogle ScholarPubMed
Grant, J., Valian, V., & Karmiloff-Smith, A. (2002). A study of relative clauses in Williams syndrome. Journal of Child Language, 29, 403416.CrossRefGoogle ScholarPubMed
Grice, S. J., de Haan, M., Hanife, H., Johnson, M. H., Csibra, G., Grant, J., et al. (2003). ERP abnormalities of illusory contour perception in Williams syndrome. NeuroReport, 14 (14), 17731777.CrossRefGoogle ScholarPubMed
Grice, S. J., Michael, S. W., Karmiloff-Smith, A., Hanife, H., Csibra, G., de Haan, M., et al. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. NeuroReport, 12 (12), 26972700.CrossRefGoogle ScholarPubMed
Hepper, P. G. (1991). An examination of fetal learning before and after birth. Irish Journal of Psychology, 12 (2), 95107.CrossRefGoogle Scholar
Holinger, D. P., Bellugi, U., Mills, D. L., Korenberg, J. R., Reiss, A. L., Sherman, G. F., et al. (2005). Relative sparing of primary auditory cortex in Williams syndrome. Brain Research, 1037 (1–2), 3542.CrossRefGoogle ScholarPubMed
Hsu, C. F., Karmiloff-Smith, A., Tzeng, O., Chin, R. T., & Wang, W. C. (2007). Semantic knowledge in Williams syndrome: New insights from comparing behavioural and brain processes in false memory tasks. Proceedings of the 6th IEEE International Conference on Development and Learning, 6, 4852.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6, 19.Google ScholarPubMed
Jarrold, C., Hartley, S. J., Phillips, C., & Baddeley, A. D. (2000). Word fluency in Williams syndrome: Evidence for unusual semantic organization? Cognitive Neuropsychiatry, 5 (4), 293319.CrossRefGoogle Scholar
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.CrossRefGoogle ScholarPubMed
Johnson, M. H., Karmiloff-Smith, A., Pennington, B. F., & Oliver, A. (2000). Deviations in the emergence of representations: Themes and variations. Developmental Science, 3, 3840.CrossRefGoogle Scholar
Jones, W., Hesselink, J., Courchesne, E., Duncan, T., Matsuda, K., & Bellugi, U. (2002). Cerebellar abnormalities in infants and toddlers with Williams syndrome. Developmental Medicine and Child Neurology, 44, 688694.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Karmiloff-Smith, A. (1995). Annotation: The extraordinary cognitive journey from foetus through infancy. Journal of Child Psychology and Child Psychiatry, 36 (8), 12931313.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1997). Crucial differences between developmental cognitive neuroscience and adult neuropsychology. Developmental Neuropsychology, 13 (4), 513524.CrossRefGoogle Scholar
Karmiloff-Smith, A. (1998). Development itself is the clue to understanding developmental disorders. Trends in Cognitive Sciences, 2 (10), 389398.CrossRefGoogle Scholar
Karmiloff-Smith, A. (2006). Modules, genes and evolution: What have we learned from atypical development? In Munakata, Y. & Johnson, M. H. (Eds.), Processes of change in brain and cognitive development, attention and performance XXI (pp. 563583). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Karmiloff-Smith, A. (2007). Atypical epigenesis. Developmental Science, 10 (1), 8488.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Ansari, D., Campbell, L., Scerif, G., & Thomas, M. S. C. (2006). Theoretical implications of studying genetic disorders: The case of Williams syndrome. In Morris, C., Lenhoff, H., & Wang, P. (Eds.), Williams-Beuren syndrome: Research and clinical perspectives (pp. 254273). Baltimore: Johns Hopkins University Press.Google Scholar
Karmiloff-Smith, A., Grant, J., Berthoud, I., Davies, M., Howlin, P., & Udwin, O. (1997). Language and Williams syndrome: How intact is “intact”? Child Development, 68 (2), 246262.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Scerif, G., & Ansari, D. (2003). Double dissociations in developmental disorders? Theoretically misconceived, empirically dubious. Cortex, 39, 161163.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Thomas, M., Annaz, D., Humphreys, K., Ewing, S., Brace, N., et al. (2004). Exploring the Williams syndrome face-processing debate: The importance of building developmental trajectories. Journal of Child Psychology and Psychiatry, 45 (7), 12581274.CrossRefGoogle ScholarPubMed
Klein, B. P., & Mervis, C. B. (1999). Contrasting patterns of cognitive abilities of 9- and 10-year-olds with Williams syndrome or Down syndrome. Developmental Neuropsychology, 16 (2), 177196.CrossRefGoogle Scholar
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831843.CrossRefGoogle ScholarPubMed
Laing, E., Butterworth, G., Ansari, D., Gsödl, M., Longhi, E., Panagiotaki, G., et al. (2002). Atypical development of language and social communication in toddlers with Williams syndrome. Developmental Science, 5, 233246.CrossRefGoogle Scholar
Laing, E., Hulme, C., Grant, J., & Karmiloff-Smith, A. (2001). Learning to read in Williams syndrome: Looking beneath the surface of atypical reading development. Journal of Child Psychology and Psychiatry, 42 (6), 729739.CrossRefGoogle ScholarPubMed
Laws, G., & Bishop, D. V. M. (2004). Pragmatic language impairment and social deficits in Williams syndrome: A comparison with Down's syndrome and specific language impairment. International Journal of Language and Communication Disorders, 39 (1), 4564.CrossRefGoogle ScholarPubMed
Levy, Y., & Bechar, T. (2003). Cognitive, lexical and morpho-syntactic profiles of Israeli children with Williams syndrome. Cortex, 39 (2), 255271.CrossRefGoogle ScholarPubMed
Lukacs, A., Pleh, C., & Racsmany, M. (2004). Language in Hungarian children with Williams syndrome. In Bartke, S. & Siegmüller, J. (Eds.), Williams syndrome across languages (pp. 188220). Amsterdam: John Benjamins.Google Scholar
Lund, J. S., Boothe, R. G., & Lund, R. D. (1977). Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity. Journal of Comparative Neurology, 176 (2), 149188.CrossRefGoogle ScholarPubMed
Majdan, M., & Schatz, C. J. (2006) Effects of visual experience on activity-dependent gene regulation in cortex. Nature Neuroscience, 9 (5), 650659.CrossRefGoogle ScholarPubMed
Masataka, N. (2001). Why early linguistic milestones are delayed in children with Williams syndrome: Late onset of hand banging as a possible rate-limiting constraint on the emergence of canonical babbling. Developmental Science, 4 (2), 158164 (7).CrossRefGoogle Scholar
Meaney, M. J., & Szyf, M. (2005) Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neuroscience, 28 (9), 456463.CrossRefGoogle Scholar
Mervis, C., & Bertrand, J. (1997) Developmental relations between cognition and language: Evidence from Williams syndrome. In Adamson, L. B. & Romski, M. A. (Eds.), Research on communication and language disorders: Contributions to theories of language development (pp. 75106). New York: Brookes.Google Scholar
Mervis, C. B., Morris, C. A., Bertrand, J., & Robinson, B. F. (1999). Williams syndrome: Findings from an integrated program of research. In Tager-Flusberg, H. (Ed.), Neurodevelopmental disorders (pp. 65110). Cambridge, MA: MIT Press.Google Scholar
Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8 (8), 991993.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., et al. (2005). Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. Journal of Clinical Investigation, 115 (7), 18881895.CrossRefGoogle ScholarPubMed
Mills, D., Alvarez, D. T., George, M., Appelbaum, L. G., Bellugi, U., & Neville, H. (2000). Electrophysiological studies of face processing in Williams syndrome. Journal of Cognitive Neuroscience, 12 (1), 4764.CrossRefGoogle ScholarPubMed
Morris, C. A., Demsey, S. A., Leonard, C. O., Dilts, C., & Blackburn, B. L. (1988). Natural history of Williams syndrome: Physical characteristics. Journal of Pediatrics, 113 (2), 318326.CrossRefGoogle ScholarPubMed
Morris, C. A., Thomas, I. T., & Greenberg, F. (1993). Williams syndrome: Autosomal dominant inheritance. American Journal of Medical Genetics, 47 (4), 478481.CrossRefGoogle ScholarPubMed
Nazzi, T., Gopnik, A., & Karmiloff-Smith, A. (2005). Asynchrony in the cognitive and lexical development of young children with Williams syndrome. Journal of Child Language, 32, 427438.CrossRefGoogle ScholarPubMed
Nazzi, T., & Karmiloff-Smith, A. (2002). Early categorization abilities in young children with Williams syndrome. NeuroReport, 13 (10), 12591262.CrossRefGoogle ScholarPubMed
Nazzi, T., Paterson, S., & Karmiloff-Smith, A. (2003). Early word segmentation by infants and toddlers with Williams syndrome. Infancy, 4 (2), 251271.CrossRefGoogle Scholar
Neville, H. J. (2006). Flexibility and plasticity in cortical development. In Munakata, Y. & Johnson, M. J. (Eds.), Attention and performance, XX1: Processes of change in brain and cognitive development (pp. 287314). Oxford, England: Oxford University Press.CrossRefGoogle Scholar
Neville, H., Mills, D., & Bellugi, U. (1994). Effects of altered auditory sensitivity and age of language acquisition on the development of language-relevant neural systems: Preliminary studies of Williams syndrome. In Broman, S. & Grafman, J. (Eds.), Atypical cognitive deficits in developmental disorders: Implications for brain function (pp. 6783). Hillsdale, NJ: Erlbaum.Google Scholar
Pankau, R., Gosch, A., Simeoni, E., & Wessel, A. (1993). Williams-Beuren syndrome in monozygotic twins with variable expression. American Journal of Medical Genetics, 47 (4), 475477.CrossRefGoogle ScholarPubMed
Paterson, S. J., Brown, J. H., Gsödl, M. K., Johnson, M. H., & Karmiloff-Smith, A. (1999). Cognitive modularity and genetic disorders. Science, 286 (5448), 23552358.CrossRefGoogle ScholarPubMed
Piatelli-Palmarini, M. (2001). Speaking of learning: How do we acquire our marvelous facility for expressing ourselves in words? Nature, 411, 887888.CrossRefGoogle Scholar
Pinker, S. (1994). The language instinct. London: Penguin Books.CrossRefGoogle Scholar
Pinker, S. (1999). Words and rules. London: Weidenfeld & Nicholson.Google Scholar
Rae, C., Karmiloff-Smith, A., Lee, M. A., Dixon, R. M., Grant, J., Blamire, A. M., et al. (1998). Brain biochemistry in Williams syndrome: Evidence for a role of the cerebellum in cognition? Neurology, 51, 3340.CrossRefGoogle ScholarPubMed
Reiss, A. L., Eliez, S., Schmitt, J. E., Straus, E., Lai, Z., Jones, W., et al. (2000). Neuroanatomy of Williams syndrome: A high-resolution MRI study. Journal of Cognitive Neuroscience, 12, 6573.CrossRefGoogle ScholarPubMed
Rossen, M., Klima, E. S., Bellugi, U., Bihrle, A., & Jones, W. (1996). Interaction between language and cognition: Evidence from Williams syndrome. In Beitchman, J. H., Cohen, N. J., Konstantareas, M. M., & Tannock, R. (Eds.), Language, learning, and behavior disorders (pp. 367392). New York: Cambridge University Press.Google Scholar
Scerif, G., Cornish, K., Wilding, J., Driver, J., & Karmiloff-Smith, A. (2004). Visual search in typically developing toddlers and toddlers with fragile X or Williams syndrome. Developmental Science, 7 (1), 116130.CrossRefGoogle ScholarPubMed
Schmitt, J. E., Eliez, S., Warsofsky, I. S., Bellugi, U., & Reiss, A. L. (2001). Corpus callosum morphology of Williams syndrome: Relation to genetics and behavior, Developmental Medicine and Child Neurology, 43, 155159.CrossRefGoogle ScholarPubMed
Schmitt, J. E., Watts, K., Eliez, S., Bellugi, U., Galaburda, A. M., & Reiss, A. L. (2002). Increased gyrification in Williams syndrome: Evidence using 3D MRI methods. Developmental Medicine and Child Neurology, 44, 292295.CrossRefGoogle ScholarPubMed
Semel, E. M., & Rosner, S. R. (2005). Understanding Williams syndrome: Behavioral patterns and interventions. Hillsdale, NJ: Erlbaum.Google Scholar
Smith, N., & Tsimpli, I. (1995). The mind of a savant: Language learning and modularity. Oxford, England: Blackwell.Google Scholar
Stevens, T., & Karmiloff-Smith, A. (1997). Word learning in a special population: Do individuals with Williams syndrome obey lexical constraints? Journal of Child Language, 24, 737765.CrossRefGoogle Scholar
Stojanovik, V., Perkins, M., & Howard, S. (2004). Williams syndrome and specific language impairment do not support claims for developmental double dissociations and innate modularity. Journal of Neurolinguistics, 17, 403424.CrossRefGoogle Scholar
Strømme, P., Bjørnstad, P. G., & Ramstad, K. (2002). Prevalence estimation of Williams syndrome. Journal of Child Neurology, 17 (4), 269271.CrossRefGoogle ScholarPubMed
Tassabehji, M. (2003). Williams–Beuren syndrome: A challenge for genotype–phenotype correlations. Human Molecular Genetics, 12 (2), R229R237.CrossRefGoogle ScholarPubMed
Temple, C. M., Almazan, M., & Sherwood, S. (2002). Lexical skills in Williams syndrome: A cognitive neuropsychological analysis. Journal of Neurolinguistics, 15 (6), 463495.CrossRefGoogle Scholar
Thomas, M. S. C., Annaz, A., Ansari, D., Scerif, G., Jarrold, C., & Karmiloff-Smith, A. (in press). Using developmental trajectories to understand genetic disorders.Google Scholar
Thomas, M. S. C., Dockrell, J. E., Messer, D., Parmigiani, C., Ansari, D., & Karmiloff-Smith, A. (2006). Speeded naming, frequency and the development of the lexicon in Williams syndrome, Language and Cognitive Processes, 21 (6), 721759.CrossRefGoogle Scholar
Thomas, M. S. C., Grant, J., Barham, Z., Gsödl, M., Laing, E., Lakusta, L., et al. (2001). Past tense formation in Williams syndrome. Language and Cognitive Processes, 2 (16), 143176.CrossRefGoogle Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2003). Modeling language acquisition in atypical phenotypes, Psychological Review, 110 (4), 647682.CrossRefGoogle ScholarPubMed
Vicari, S., Carlesimo, G., Brizzolara, D., & Pezzini, G. (1996). Short-term memory in children with Williams syndrome: A reduced contribution of lexical–semantic knowledge to word span, Neuropsychologia, 34 (9), 919925.CrossRefGoogle ScholarPubMed
Volterra, V., Capirci, O., & Caselli, M. C. (2001). What atypical populations can reveal about language development: The contrast between deafness and Williams syndrome. Language and Cognitive Processes, 16 (2–3), 219239.CrossRefGoogle Scholar
Volterra, V., Capirci, O., Pezzini, G., Sabbadini, L., & Vicari, S. (1996). Linguistic abilities in Italian children with Williams syndrome. Cortex, 32, 663677.CrossRefGoogle ScholarPubMed
Volterra, V., Caselli, M. C., Capirci, O., Tonucci, F., & Vicari, S. (2003). Early linguistic abilities of Italian children with Williams syndrome. Developmental Neuropsychology, 23 (1&2), 3358.CrossRefGoogle ScholarPubMed
Wexler, K. (1996). The development of inflection in a biologically based theory of language acquisition. In Rice, M. L. (Ed.), Toward a genetics of language (pp. 113144). London: Taylor and Francis Group, Psychology Press.Google Scholar
Williams, J. C. P., Barratt-Boyes, B. G., & Lowe, J. B. (1961). Supravalvular aortic stenosis. Circulation, 24, 13111318.CrossRefGoogle ScholarPubMed