Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T04:42:16.680Z Has data issue: false hasContentIssue false

Relative sea-level changes in crete: reassessment of radiocarbon dates from Sphakia and west Crete1

Published online by Cambridge University Press:  27 September 2013

Simon Price
Affiliation:
Lady Margaret Hall, Oxford
Tom Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford
Lucia Nixon
Affiliation:
Magdalen College, Oxford
Jennifer Moody
Affiliation:
Classics Department, University of Texasat Austin

Abstract

This article is concerned with the recognition and dating of Holocene relative sea-level changes along the coast of west Crete (an island located in the active Hellenic subduction arc of the southern Aegean) and in particular in Sphakia. Radiocarbon data for changes in sea levels collected and analysed previously must (a) be recorrected to take into account isotopic fractionation, and (b) recalibrated by using the new marine reservoir value. These new radiocarbon dates are analysed using Bayesian statistics. The resulting calendar dates for changes in sea level are younger than previously assumed. In particular the Great Uplift in western Crete in late antiquity must be dated to the fifth or sixth century AD, not to AD 365. Moreover, recent work on tectonics suggests that the Great Uplift need not have been accompanied by a catastrophic earthquake. Finally, we consider the consequences of the Great Uplift for some coastal sites in Sphakia.

Type
Articles
Copyright
Copyright © The Council, British School at Athens 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2 For some illustrations of wave notches, see on the Sphakia Survey website (n. 16), Region 5 (mouth of the Aradena Gorge) and Site 8.50 (multiple wave notches just east of Frangokastello).

3 Pirazzoli et al. 1982, with further references in n. 11, is the starting-point for our work. In this paper conventional radiocarbon ages are given as years BP, following the conventions outlined by Stuiver, M. and Polach, H. A., ‘Discussion: Reporting of 14C data’, Radiocarbon, 19 (1977), 355–63CrossRefGoogle Scholar. Calibrated radiocarbon ages are given as cal BC or cal AD.

4 Cf. Rackham, O. and Moody, J., The Making of the Cretan Landscape (Manchester, 1996), 13–15, 195Google Scholar.

5 Gifford, J. A., ‘The physical geology of the western Mesara and Kommos’, in Shaw, J. W. and Shaw, M. C. (eds), Kommos, i. 1 (Princeton, 1995), 30–87 at 51–5, 7180Google Scholar, modifies the model of Pirazzoli and others for central Crete.

6 Principles of Geology (1st edn; London, 18301833), i. frontispiece and 449–59Google Scholar.

7 Raulin, V., Description physique de l'île de Crète, 2 vols plus Atlas volume (Paris, 1861), ii. 625–34Google Scholar (based on field work in 1845); Spratt 1865, ii. 245–6, 249, 252 (field work of 1854).

8 Flemming 1978. Flemming, N. C. and Webb, C. O., ‘Tectonic and eustatic coastal changes during the last 10,000 years derived from archeological data’, ZFG n.s. supp. 62 (1986), 129Google Scholar, extend the analysis to 1,053 archaeological sites round the Mediterranean.

9 Hafemann, D., ‘Die Niveauveränderungen an den Küsten Kretas seit dem Altertum’, Akademie der Wissenschaften und der Literatur [Mainz], Abh. der mathematisch-naturwissenschaftlichen Klasse 1965 No. 12 (Wiesbaden, 1965), 607–88Google Scholar.

10 Pirazzoli and Thommeret 1977; Laborel et al. 1979; Pirazzoli, P. A., Thommeret, J., Thommeret, Y., Laborel, J., and Montaggioni, L. F., ‘Les rivages émergés d'Antikythira (Cerigotto): corrélations avec la Crète Occidentale et implications cinématiques et géodynamiques’, in Actes du Collogue ‘Niveaux marins et tectonique quaternaires dans l'aire méditerranéenne’ (Paris 29.11.1980) (Paris, 1981), 5065Google Scholar.

11 Pirazzoli et al. 1982 offer a synthesis in relation to south west Crete; Pirazzoli 1986 gives an interpretation of the ‘early Byzantine tectonic paroxysm’; id., ‘Sea-level changes and crustal movements in the Hellenic arc (Greece): the contribution of archaeological and historical data’, in A. Raban (ed.), Archaeology of Coastal Changes (BAR S404; Oxford, 1988), 157–84, and ‘Les ports antiques soulevés de la Méditerranée orientale’, in Geoarqueologia i Quaternari litoral: Memorial M. P. Fumanal (Valencia, 1999), 391401Google Scholar, are more general syntheses.

12 Grove, A. T. and Rackham, O., The Nature of Mediterranean Europe: An Ecological History (New Haven, 2001), 43–4Google Scholar, recalibrated Cretan data which were suggested as being from the AD 365 event and arrived at a later date, AD 530 ± 100 for the Great Uplift (.95 probability).

13 Kelletat, D. and Zimmermann, L., Verbreitung und Formtypen rezenter und subrezenter organischer Gesteinsbildungen an den Küsten Kretas (Essener Geographische Arbeiten, 23; Paderborn, 1991Google Scholar). Cf. Kelletat, D., ‘The 1550 BP tectonic event in the Eastern Mediterranean as a basis for assuring the intensity of shore processes’, ZFG n.s. supp. 81 (1991), 181–94Google Scholar; id., ‘Perspectives in coastal geomorphology of western Crete, Greece’, ZFG n.s. supp. 102 (1996), 1–19.

14 Nemec, W. and Postma, G., ‘Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution’, in Marzo, M. and Puigdefábregas, C. (eds), Alluvial Sedimentation (International Association of Sedimentologists, Special Publication 17; Oxford, 1993), 235–76CrossRefGoogle Scholar. See also their reply to criticism in Sedimentology, 42 (1995), 531–49CrossRefGoogle Scholar.

15 Postma, G. and Nemec, W., ‘Regressive and transgressive sequences in a raised Holocene gravelly beach, southwestern Crete’, Sedimentology, 37 (1990), 907–20CrossRefGoogle Scholar.

16 The Survey's website is the best introduction to the work of the Survey: L. Nixon, J. Moody, S. Price and O. Rackham, ‘The Sphakia survey: internet edition’ (2000), http://sphakia.classics.ox.ac.uk/; it includes a republication of the three mam preliminary articles, and the site database (with photographs of all sites).

17 As was observed originally by Ogilvie, R. M., ‘Phoenix’, Journal of Theological Studies, n.s. 9 (1958), 308–14CrossRefGoogle Scholar, a reference we owe to the indefatigable curiosity of Dr J. Wanklyn.

18 Fair-bridge, R. W., ‘Eustatic changes in sea-level’, Physic and Chemistry of the Earth, 4 (1961), 99185CrossRefGoogle Scholar; Mörner, N.-A., ‘Eustasy and geoidal changes as a function of core/mantle changes’, in id. (ed.), Earth Rheology, Isostasy and Eustasy (Chichester and New York, 1980), 535–53Google Scholar. In relation to the Aegean sea, see Lambeck, K., ‘Sea-level changes and shore line evolution in Aegean Greece since Upper Palaeolithic times’, Antiquity, 70 (1996), 588611CrossRefGoogle Scholar.

19 Thommeret et al. 1981a, 136, with fig. 8; Pirazzoli, P. A., ‘Tectonic shorelines’, in Garter, R. W. G. and Woodroffe, C. D. (eds), Coastal Evolution: Late Quaternary Shoreline Morphodynamics (Cambridge, 1994), 451–76, at 466–8Google Scholar; Pirazzoli, P. A., Laborel, J., and Stiros, S. C., ‘Coastal indicators of rapid uplift and subsidence: examples from Crete and other eastern Mediterranean sites’, ZfG n. s. supp. 102 (1996), 2135Google Scholar; Pirazzoli, P. A., ‘Uplift of ancient Greek coastal sites: study methods and results’, in Stiros, S. and Jones, R. E. (eds), Archaeoseismology (BSA Fitch Laboratory Occasional Paper 7; Athens, 1996), 237–44Google Scholar.

20 Pirazzoli, P. A., Laborel, J., and Stiros, S. C., ‘Earthquake clustering in the eastern Mediterranean during historical times’, Journal of Geophysical Research, 101 (1996), 6083–97CrossRefGoogle Scholar; Stiros, S. C., Arnold, M., Pirazzoli, P. A., Laborel, J., Laborel, F., and Papageorgiou, S., ‘Historical coseismic uplift on Euboea Island, Greece’, Earth and Planetary Science Letters, 108 (1992), 109–17CrossRefGoogle Scholar.

21 Pirazzoli et al. 1992; Dawson, A., ‘The geological significance of tsunamis’, ZfG n.s. supp. 102 (1996), 199–210, at 204–5Google Scholar. See further below, n. 48.

22 Kelletat 1991 and 1996 (n. 13).

23 Laborel, J. and Laborel-Deguen, F., ‘Biological indicators of Holocene sea-level variations and of co-seismic displacement in the Mediterranean area’, Journal of Coastal Research, 10 (1994), 395415Google Scholar.

24 For an introduction to this subject see T. Higham, ‘Radiocarbon web-info’, (1999), http://www.c14dating.com.

25 Stuiver, M., Pearson, G. W., and Braziunas, T. F., ‘Radiocarbon age calibration of marine samples back to 9000 Cal Yr BP’, Radiocarbon, 28. 2B (1986), 9801021CrossRefGoogle Scholar; Stuiver, M., Reimer, P. J., and Braziunas, T. F., ‘High-precision radiocarbon age calibration for terrestrial and marine samples’, Radiocarbon, 40. 3 (1998), 1127–51CrossRefGoogle Scholar.

26 Siani, G., Paterne, M., Arnold, M., Bard, E., Metivier, B., Tisnerat, N., and Bassinot, F., ‘Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea’, Radiocarbon, 42 (2000), 271–80CrossRefGoogle Scholar.

27 Reimer, P. J., and McCormac, F. G., ‘Marine reservoir corrections for the Mediterranean and Aegean seas’, Radiocarbon, 44 (2002), 159–66CrossRefGoogle Scholar.

28 This calculation follows Stuiver, M. and Polach, H. A., ‘Discussion: Reporting of 14C data’, Radiocarbon, 19 (1977), 355–63 at 358CrossRefGoogle Scholar and Gupta, S. K. and Polach, H. A., Radiocarbon Dating Practices at AMU (Handbook, Radiocarbon Dating Laboratory, Research School of Pacific Studies, ANU; Canberra, 1985Google Scholar); see also discussion in Stiros et al. (n. 20); also Arnold, M., Hadjidaki, E., Montaggioni, L. F., Giresse, P., Ausseil-Badie, J., and Pirazzoli, P. A., ‘The raised harbor of Phalasarna (West Crete): archaeological, stratigraphic and radiometric data’ (unpub. manuscript)Google Scholar.

29 Stuiver and Polach (n. 28); we are grateful for advice on this point to Dr Paula J. Reimer.

30 pirazzoli 1986.

31 For an introduction to archaeoseismology, see Jones, R. E. and Stiros, S. C., ‘The advent of archaeoseismology in the Mediterranean’, in McGuire, W. J., Griffiths, D. R., Hancock, P. L., and Stewart, I. S. (eds), The Archaeology of Geological Catastrophes (Geological Society, Special Publication 171; London, 2000), 2532Google Scholar. Carver, G. A. and McCalpin, J. P., ‘Paleoseismology of compressed tectonic environments’, in McCalpin, (ed.), Paleoseismology (San Diego, 1996), 183270CrossRefGoogle Scholar, is also helpful.

32 Jacques, F. and Bousquet, B., ‘Le raz de marée du 21 juillet 365. Du cataclysme local à la catastrophe cosmique’, MEFRA 96 (1984), 423–61CrossRefGoogle Scholar, presenting a maximalist view of the scope of this event. The evidence is reviewed more critically by Guidoboni, E., Contastri, A., and Traina, G., Catalogue of Ancient Earthquakes in the Mediterranean up to the 10th Century (Rome, 1994), 267–74Google Scholar, and Ambraseys, N. N., Melville, C. P., and Adams, R. D., The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review (Cambridge 1994), 22–4CrossRefGoogle Scholar. On Libya see more recently Ambraseys, N. N., ‘Material for the investigation of the seismicity of Libya’, Libyan Studies, 25 (1994), 722CrossRefGoogle Scholar; White, D., ‘Fresh reverberations from Gyrene's later antique earthquakes’, in Bacchielli, L. and Aravantinos, M. B. (eds), Scritti di antichità in memoria di Sandro Stucchi (Studi Miscellanei, 29; Rome, 1996), i. 317–25Google Scholar (references we owe to Dr A. Wilson). For a list of Greek earthquakes (not using the works cited above), see ‘The telemetry seismological network of Geophysical Department of Thessaloniki University, Greece’, http://geohazards.cr.usgs.gov/iaspei/europe/greece/the/. For an earlier recalibration see Grove and Rackham, op. cit. (n. 12).

33 Stiros, S. C. and Papageorgiou, S., ‘Seismicity of western Crete and the destruction of the town of Kissamos at AD 365: archaeological evidence’, Journal of Seismology, 5 (2001), 381–97CrossRefGoogle Scholar; Stiros, , ‘The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the eastern Mediterranean: a review of historical and archaeological data’, Journal of Structural Geology, 23 (2001), 545–62CrossRefGoogle Scholar (Kissamos and Eleutherna). See also Stiros, S. Papageorgiou, and S. Markoulaki, ‘Καταστροφή των Κρητικών πόλεων το 365 μ.X.’, Πρακτικά Διεϑνούς Συνεδρίου Creta Romana e Protobizantina 2001; Drakos, A. G. and Stiros, S. C., ῾ Ο σεισμός του 365 μ.X. από το θρύλο στην προσομοιωση᾿, Δελτίο της Ελληνικής Γεωλογικἡς Εταιρείας, 34/5 (2001), 1417–24Google Scholar.

34 IG iv. 674 (republished by D. Feissel and Braat, A. Philippidis, ‘Inventaires en vue d'un recueil des inscriptions historiques de Byzance: III Inscriptions du Péloponnèse (à l'exception de Mistra)’, Travaux et Mémoires, 9 (1985), 267395, at p. 274Google Scholar no. 9) records restorations at Nauplion (AD 375–8) following ‘earthquakes and tsunamis (?)’, κατἀ σισμοὐς καί τοὐς θολαττίο[υς/κατακλυσμοὐς . . . (we owe this reference to Mr G. Deligiannakis). However, it is not possible to establish whether any of the events referred to are the major quake of AD 365.

35 Ambraseys, N. N. and White, D. P., Seismicity of the East Mediteranean and Middle East I (ESEE Research Report 96; Civil Engineering Department, Imperial College London, 1996), 10Google Scholar.

36 Cf. Guidoboni et al. (n. 32); Ambraseys et al. (n. 32); Waldherr, G., Erdbeben, das auηergewöhnliche Normals: zur Rezeption seismischer Aktivitäten in literarischen Quellcn vom 4. Jahrhundert v. Chr. bis zum 4. Jahrhundert n. Chr. (Geographica historica, 9; Stuttgart, 1997Google Scholar).

37 A. Di Vita, ‘Earthquakes and civil life at Gortyn (Crete) in the period between Justinian and Constant II (6–7th century AD)’, in Stiros and Jones (n. 19), 45–50; AD 796 (April) Theophanes 470.5–10: Guidoboni et al. (n. 32); Ambraseys et al. (n. 32), 26.

38 Lowry, A. R., Larson, K. M., Kostoglodov, V., and Bilham, R., ‘Transient fault slip in Guerrero, southern Mexico’, Geophysical Research Letters, 28 no. 19 (2001), 3753–6CrossRefGoogle Scholar.

39 The ratio of the slip in an earthquake to the length of the fault that slipped is usually between 1 part in 10-4 and one part in 10-5, thus a slip of about 10 m in an earthquake would imply a fault length of between 100 and 1000 km. Cf. Scholz, C. H., The Mechanics of Earthquakes and Faulting (Cambridge, 1994Google Scholar). We owe this point to Professor Philip England.

40 Jackson, J. A. and McKenzie, D., ‘The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East’, Geophysical Journal, 93 (1988), 4573CrossRefGoogle Scholar; Jackson, , ‘Active tectonics of the Aegean region’, Annual Review of Earth and Planetary Sciences, 22 (1994), 239–71CrossRefGoogle Scholar; id., ‘Living with earthquakes: know your faults’, Journal of Earthquake Engineering, 5 special issue 1 (2001), 5–123, at pp. 86–8.

41 Buck, C. E., Cavanagh, W. G., and Litton, C. D., Bayesian Approach to Interpreting Archaeological Data (Chichester, 1996Google Scholar).

42 Buck, C. E., Litton, C. D., and Smith, A. F. M., ‘Calibration of radiocarbon results pertaining to related archaeological events’, Journal of Archaeological Science, 19 (1992), 497512CrossRefGoogle Scholar; Buck et al. (n. 41); Buck, C. E. and Christen, J. A., ‘A novel approach to selecting samples for radiocarbon dating’, Journal of Archaeological Science, 25 (1998), 303–10CrossRefGoogle Scholar; Ramsey, C. Bronk, ‘Radiocarbon calibration and analysis of stratigraphy: the OxCal program’, Radiocarbon, 37 (1995), 425–30CrossRefGoogle Scholar.

43 Buck, C. E., Christen, J. A., and James, G. N., ‘An on-line Bayesian radiocarbon calibration tool’, Internet Archaeology, 7 (2000Google Scholar): http://intarch.ac.uk/journal/issue7/buck/index.html.

44 The BCal calibration model was run three times with a Markov Chain Monte Carlo (MCMC) sampler of 50,000 iterations collected at a sampling interval of 50 (see nn. 41 and 42) with a convergence checking of 4. As there were no significant differences between runs, we are confident in the reproducibility of the sampling in this dataset.

45 The authors of the various papers from which the radiocarbon data were obtained had suggested that the dates might be problematic (see notes and references to TABLE 2).

46 C. E. Buck, T. F. G. Higham, and D. J. Lowe, ‘Bayesian tools for tephrochronology’, The Holocene, forthcoming.

47 Christen, J. A., ‘Summarizing a set of radiocarbon determinations: a robust approach’, Applied Statistics, 43. 3 (1994), 489503CrossRefGoogle Scholar.

48 We note that Dominey-Howes, D., Dawson, A., and Smith, D., ‘Late Holocene coastal tectonics at Falasarna, western Crete: A sedimentary study’, in Stewart, I. S. and Vita-Finzi, C. (eds), Coastal Tectonics (Geological Society, Special Publications 146; London, 1998), 343–52Google Scholar, find no evidence of a tsunami dating around AD 365 in their analysis of putative tsunami deposits in Phalasarna harbour.

49 On date, see Rougé, J., Recherches sur l'organisation du commerce maritine en Méditerranée sous l'empire romain (Paris, 1966), 24–5Google Scholar; cf. Cuntz, O., ‘Der Stadiasmus Maris Magni’, Texte und Untersuchungen zur Geschichte der altchristlichen Literatur, 29 (1906), 243–76, at 243–53Google Scholar.

50 The vivid description in Spratt 1865, ii. 244–6 of the difficulty of landing there still holds good today. The topography of the original beach is well illustrated in Pirazzoli 1999 (n. 11), 397 fig. 9.

51 A thick layer of sand has accumulated on both sides of the river; on the west side it is 2–3 m thick near the coast. This postdates the Roman period (Archaic–Classical and Roman graves were excavated beneath 1.50 m of sand: Tzedakis, I., ‘Δυτική Κρήτη’, A. Delt. 25. 2 (1970Google Scholar), Chron. 473; Davaras, K., ‘Δυτική Κρήτη’, A. Delt. 26. 2 (1971), Chron. 511Google Scholar). In the region of Kommos there was also a sudden deposit of sand after the Hellenistic period, after two millennia of gradual deposit (Gifford, n. 5). It is tempting (though Gifford does not do so) to relate this to the sudden 2 m uplift in the area between 100 B C and AD 200, which might have caused a tsunami. The same might be true for Agia Roumeli.

52 Cf. Moody, J., Nixon, L., Price, S., and Rackham, O., ‘Surveying poleis and larger sites in Sphakia’, in Cavanagh, W. G., Curtis, M. et al. (eds), Post-Minoan Crete (BSA Studies 2; London, 1998), 8795, at P. 89Google Scholar.

53 We are grateful here to advice on dating from Professor K. Dunbabin.

54 For discussion of the importance of different altitudes in Sphakia, see Nixon, L., Moody, J., Price, S., and Rackham, O., ‘Rural settlement in Sphakia, Crete’, in Doukellis, P. and Mendoni, L. (eds), Structures rurales et sociétés antiques: Actes du colloque de Corfou 14 16 mai 1992 (Annales littéraires de l'Université de Besançon; Paris, 1994), 255–64Google Scholar; Moody and Nixon et al. (n. 52), 90–2.

55 Brulé, P., La Piraterie crétoise hellénistique (Paris, 1978), 148–56CrossRefGoogle Scholar; Sanders, I. F., Roman Crete to the Arab Period (Warminster, 1982), 30–1Google Scholar; cf. Kirsten, E., Das dorische Kreta (Würzburg, 1942), 80–6Google Scholar and Petropoulou, A., Beiträge zur Wirtschafts- und Gesellschaftsgeschichte Kretas in hellenistischer Zeit (Frankfurt am Main, 1985), 133–4Google Scholar.