Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:19:21.811Z Has data issue: false hasContentIssue false

Excavations at Kouphovouno, Laconia: Results from the 2001 and 2002 Seasons1

Published online by Cambridge University Press:  27 September 2013

W. Cavanagh
Affiliation:
University of Nottingham
C. Mee
Affiliation:
University of Liverpool
J. Renard
Affiliation:
Montpellier 3, Université Paul Valéry

Abstract

A final report is presented here on the excavation of four Areas at the prehistoric site of Kouphovouno, Sparta, Lakonia. Areas A and D were excavated as trials in 2001 and lie outside the land purchased by the BSA for the main campaigns, so they could not be excavated further, whilst Areas E and F had extensive deposits of historic date and were not further explored as being outside the remit of the main Kouphovouno Project. The excavations have yielded important Neolithic and Early Helladic II deposits, plus Bronze Age burials and later Roman remains. After summarising the aims of the Project and mentioning earlier work at the site, the report gives an account of the stratigraphy and finds and includes specialist reports on the human and animal bones, the ceramics, the chipped and ground stone and other finds. Also discussed is the relationship between the surface remains reported in BSA 99 and the excavated material.

Type
Articles
Copyright
Copyright © The Council, British School at Athens 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2 See Cavanagh, W. G., ‘WYSIWYG: settlement and territoriality in southern Greece during the Early and Middle Neolithic periods’, JMA 17 (2004), 165–89CrossRefGoogle Scholar. For lists of Neolithic sites see Phelps 30, 45, 65–6.

3 Renard.

4 Cavanagh–Mee–Renard.

5 See further below the sections on each area.

6 Dr Lagia would like to thank the excavators for the invitation to participate in the Kouphovouno excavation, the orthopaedist Dr V. Vernardaki for his valuable advice on the study of the pathological lesions, and Annaïg Fremont for helping significantly in the processing of the skeletal remains in the laboratory.

7 Duday, H., Courtaud, P., Crubezy, E., Sellier, P., and Tillier, A.-M., ‘L'anthropologie “de terrain”: reconnaissance et interprétation des gestes funéraires’, Bull. et Mém. de la Soc. d'Anthrop. de Paris, n.s. 2, no. 3–4 (1990), 2950Google Scholar; Roksandic, M., ‘Position of skeletal remains as a key to understanding mortuary behavior’, in Haglund, W. and Sorg, M. H. (eds), Advances in Forensic Taphonomy: Method, Theory and Archaeological Perspectives (New York, 2002), 109–10Google Scholar.

8 Buikstra–Ubelaker 95–106.

9 Saunders, S. R., ‘Subadult skeletons and growth related studies’, in Katzenberg, M. A. and Saunders, S. R. (eds), Biological Anthropology of the Human Skeleton (New York, 2000) 138–41Google Scholar.

10 Buikstra–Ubelaker 16–21.

11 Krogman, W. M. and Işcan, M. Y., The Human Skeleton in Forensic Medicine, 2nd edn. (Springfield, IL, 1986) 234–47Google Scholar; Lagia, A., Moraitis, K., Eliopoulos, C., and Manolis, S., “Εκτίμηση φύλου και ηλικίας από τον σκελετό Εφαρμογή και αξιολόγηση σύγχρονων μεθόδων σε Ελληνικούς πληθυσμούς”, Πρακτικά της Ελληνικής Εταιρείας Βιολογικώσν Επιστημών, 220 Πανελλήνιο Συνέδριο, (Athens, 2000), 138Google Scholar.

12 Moorrees, C. F. A., Fanning, E. A., and Hunt, E. E., ‘Formation and resorption of three deciduous teeth in children’, American Journal of Physical Anthropology, 21 (1963), 205–13CrossRefGoogle ScholarPubMed; iid., Age variation of formation stages for ten permanent teeth’, Journal of Dental Research, 42 (1963), 14901502CrossRefGoogle Scholar.

13 Scheuer–Black.

14 Ubelaker, D. H., Human Skeletal Remains: Excavation, Analysis, Interpretation (Washington, DC, 1989), 6571Google Scholar.

15 Scheuer–Black 468.

16 Brooks, S. T. and Suchey, J. M., ‘Skeletal age determination based on the Os pubis: a comparison of the Ascádi-Nemeskéri and Suchey-Brooks methods’, Journal of Human Evolution, 5 (1990), 227–38CrossRefGoogle Scholar.

17 Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R., and Mensforth, R. P., ‘Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of age at death’, American Journal of Physical Anthropology, 68 (1985), 1528CrossRefGoogle ScholarPubMed.

18 Loth, S. and Işcan, M. Y., ‘Morphological assessment of age in the adult: the thoracic region’, in Işcan, M. Y. (ed.), Age Markers in the Human Skeleton (Springfield, IL, 1989) 105–36Google Scholar.

19 Meindl, R. S. and Lovejoy, C. O., ‘Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures’, American Journal of Physical Anthropology, 68 (1985), 5766CrossRefGoogle ScholarPubMed.

20 Buikstra–Ubelaker 52–3.

21 Ibid. 36.

22 Krogman and Işcan (n. 11), TABLE 8. 5.

23 Ibid. (n. 11), 348.

21 e.g. Aufderheide, A. C. and Rodríguez-Martín, C., The Cambridge Encyclopedia of Human Paleopathology (Cambridge, 1998Google Scholar); Resnick, D., Diagnosis of Bone and Joint Disorders (Philadelphia, 1995Google Scholar); Ortner, D. J. and Putchard, W. G. J., Identification of Pathological Conditions in Human Skeletal Remains (Washington, DC, 1981)Google Scholar; Roberts, C. and Manchester, K., The Archaeology of Disease (New York, 1995Google Scholar); Hillson, S., Dental Anthropology (Cambridge, 1996CrossRefGoogle Scholar).

25 On the fine wall-plaster at Lerna see Wiencke 275–6.

26 Caskey, J. L. and Caskey, E. G., ‘The earliest settlements at Eutresis: supplementary excavations 1958’, Hesp. 29 (1960), 126–67 at 139–50CrossRefGoogle Scholar.

27 Wiencke 25–6.

28 Ibid., passim.

29 Ibid. 559–69.

30 Ibid. 563.

31 Ibid. 571.

32 Ibid. 531.

33 Ibid. 606.

34 Renard 159 and pl. 45. 1–2,

35 Ibid. 585–8.

36 Ibid. 587.

37 Ibid. 592–7.

38 Ibid. 601–2.

39 Elena Zavvou kindly showed us the pottery from Anthochori, which is predominantly late EH I and early EH II.

40 See Renard 128–9 and pl. 52 for EH bases with mat impressions from Kouphovouno.

41 Wiencke 547–9.

42 Renard 140 and pl. 35 for two restored examples.

43 Wiencke 535.

44 Ibid. 608–9.

45 Ibid. 607.

46 FC 60 and FS 101: Talalay, L. E., Deities, Dolls and Devices: Neolithic Figurines from Franchthi Cave, Greece (Excavations at Franchthi Cave, Greece; fasc. 9; Bloomington, IN, 1993), 1921Google Scholar and pl. 15.

47 Papathanassopoulos, 225, no. 33.

48 NM3927, NM3930, and NM3932, see Cavanagh–Mee–Renard 53–5 for a discussion of these figurines and further references.

49 Tripathi, D. N., Bronzework of Mainland Greece from c. 2600 BC to c. 1450 BC (Göteborg, 1988), 54, 250Google Scholar and FIGS. 122–5 for EH and 96, 265–6 and FIGS. 278–84 for MH tweezers.

50 Consequently the two levels 0002 and 0003 have not been included in the statistics.

51 Two adult goats and two sheep on the basis of respectively 2 and 6 bone remains.

52 MNI: Minimum Number of Individuals, NISP: Number of Identified Specimens.

53 The cheeks, the tongue, and traces of skinning.

54 Gardeisen, A., ‘Interprétation des restes fauniques dans les tombes protohistoriques du sud de la France’, in Colloque en hommage à J. F. Salinier; Pratiques funéraires protohistoriques entre Massif central et Pyrénées: nouvelles données. Puylaurens (Tarn), 15–16 janvier 2000 = Archéologie Tarnaise, 12 (2004), 211–15Google Scholar.

55 This piece has been examined by Luis García, Zoological Museum of Barcelona, who is a specialist in avian fauna.

56 Observation made when strewing the bone material from the burials in collaboration with A. Lagia.

57 The area between the skeleton and the stones delimiting the eastern wall of the grave, where the infant remains were found, was thoroughly excavated.

58 Bouwman, A., Prag, J., Brown, K., and Brown, T., ‘Middle Helladic kinship: families, faces and DNA at Mycenae’, in Touchais, G., Touchais, A. P., Voutsaki, S., and Wright, J. (eds), Mesohelladika: The Greek Mainland in the Middle Bronze Age (forthcoming)Google Scholar.

59 According to cranial suture closure, the individual pertains to a young adult age group. Besides the many questions concerning accuracy in age estimation based on cranial suture closure (Galera, V., Ubelaker, D. H., and Hayek, L.-A. C., ‘Comparison of macroscopic cranial methods of age estimation applied to skeletons from the Terry Collection’, Journal of Forensic Sciences, 43 (1998), 933–9CrossRefGoogle ScholarPubMed), it has also been observed that when there is maintenance of the metopic suture, as in the case of 0009, there is an overall delay in suture closure, hence giving a false estimation of age at death.

60 Galloway, A., Broken Bones: Anthropological Analysis of Blunt Force Trauma (Springfield, IL, 1999), 107Google Scholar.

61 Ibid. 193–6.

62 Aufderheide and Rodríguez-Martín (n. 24), 95.

63 Ibid. 97.

64 Ibid. 81–2; Resnick (n. 24), 1266.

65 The following teeth were lost before death: all second and third maxillary and mandibular molars of the right side, the second right maxillary premolar, all left mandibular molars, plus the central incisors of the mandible.

66 Rmax M1 occl, Lmax M2 cerv, Lmand P1 neck, Rm and M1 crown and root.

67 Calculus deposits are frequently associated with poor oral hygiene or carbohydrate consumption, S. Hillson (n. 24). 259–60.

68 Weaver, D. S., New Methods for the Determination of Sex, Age, and Rates of Growth of Infant and Child Skeletal Remains in Prehistoric American Indian Populations (Albuquerque, NM, 1977)Google Scholar.

69 Scheuer–Black 204.

70 Ortner, D. J. and Erickson, M. F., ‘Bone changes in the human skull probably resulting from scurvy in infancy and childhood’, International Journal of Osteoarchaeology, 7 (1997), 212–203.0.CO;2-5>CrossRefGoogle Scholar.

71 Schultz, M., ‘Paleohistopathology of bone: a new approach to the study of ancient diseases’, American Journal of Physical Anthropology, 44 (2001), 106–47CrossRefGoogle Scholar.

72 Vitelli i. 139.

73 Phelps 70.

74 Lavezzi, J. C., ‘Corinth before the Mycenaeans’, in Williams, C. K. and Bookidis, N. (eds), Corinth, The Centenary 1896–1996 (Corinth: Results of Excavations Conducted by the American School of Classical Studies at Athens, xx; Princeton, 2003), 6871Google Scholar.

75 Zachos 51.

76 Koumouzeli, M., “Η κεραμική από την Α Κουβελέικη σπηλιά Αλεποχωρίου Λακωνίας”, AAA 22 (1989), 144–6, 155–60Google Scholar.

77 Phelps 77.

78 Douzougli, A., Αρια Αργόλιδος χειροποιητή κεραμική της νεοτέρης νεολιθικής και της χαλκολιθικής περιόδου (Dimosievmata tou Archaiologikou Deltiou 66; Athens, 1998), 65–6Google Scholar.

79 Phelps 77: at Corinth it is particularly common in LN II, Lavezzi (n. 74), 70.

80 See Phelps, FIG. 41. 27 for a similar vessel from Corinth.

81 Phelps 115.

82 Vitelli ii. 104.

83 Zachos 52–5.

84 Koumouzeli (n. 76), 157–8.

85 Zachos 52; Phelps 107.

86 Zachos 121–2.

87 Ibid. 121.

88 See Cavanagh, W., Crouwel, J., Catling, R. W. V., and Shipley, G., Continuity and Change in a Greek Rural Landscape: The Laconia Survey, ii (London, 1996)Google Scholar, FIG. 12. 1. 12.

89 Siedentopf, H. B., Alt-Ägina IV 2: Mattbemalte Keramik der Mittleren Bronzezeit (Mainz, 1991), pl. 114. 739Google Scholar for a similarly decorated kantharos base from Kolonna.

90 Papathanassopoulos 229, no. 46; Séfériadès, M., ‘Préhistoire: le commerce des spondyles, de la mer Égée à la Manche’, Archéologia, 309 (1995), 4250Google Scholar; id., ‘Spondylus Gaederopus: some observations on the earliest European long distance exchange system’, in S. Hiller and V. Nikolov (eds), Karanovo, Band III: Beiträge zum Neolithikum in Südosteuropa (Vienna, 2000), 423–37.

91 Teeth present: max Rdm 1 = Cr1/2, Ldi2 = Cr3/4-c, mand Ldm2 = Cr1/2.

92 The size of the petrous is that of a full-term fetus (41.42 mm), Fazekas, I. Gy. and Kosa, F., Forensic Fetal Osteology (Budapest, 1978), 153Google Scholar.

93 Anterior fontanelles close by the end of the first or second year, Scheuer–Black 107.

94 The two halves of the mandible join at the midline during the first year of life, Ibid. 144.

95 Approximate length of the right femur: 75 mm. According to Ubelaker (n. 14), 71 the age is that of a newborn to 0.5 years.

96 See nn. 69–70.

97 Distribution of porosity on the skull of 313: the wing of the right sphenoid, the squamous of the right temporal, the basilar of the occipital, the right maxilla, and the zygomatics.

98 Ortner, D. J., Kimmerle, E., and Diez, M., ‘Probable evidence of scurvy in subadults from archaeological sites in Peru’, American Journal of Physical Anthropology, 108 (1999), 321–313.0.CO;2-7>CrossRefGoogle Scholar; Ortner, D. J., Butler, W., Cafarella, J., and Miligan, L., ‘Evidence of probable scurvy in subadults from archaeological sites in North America’, American Journal of Physical Anthropology, 114 (2001), 343–51CrossRefGoogle Scholar.

99 Ortner et al. (n. 98), 322.

100 We are extremely grateful to Clare Pickersgill, who examined the pottery from Area E and provided detailed notes on the Roman sherds.

101 Vitelli i, FIG. 56a.

102 Ibid. 121.

103 Again we are grateful to Clare Pickersgil for her observations on the pottery from Area F.

104 Cavanagh, W., Mee, C., and James, P., Laconia Rural Sites Project (BSA Supp. 36; London, 2005), esp. 302Google Scholar.

105 Lambert, N. (ed.), La Grotte préhistorique de Kitsos (Attique), missions 1968–1978 II (Recherches sur les grandes civilisations, Synthèse no. 7; Paris, 1981), 410Google Scholar; Papathanassopoulos 337, no. 294.

106 Talalay (n. 46), 18–19 and pl. 17 c.

107 Vitelli i. 439, FIG. 61 d.

108 Cavanagh–Mee–Renard.

109 Cavanagh et al. (n. 104), 16–17.

110 Ibid. 17–19.

111 Rutter, J., ‘Some thoughts on the analysis of ceramic data generated by site surveys’, in Keller, D. R. and Rupp, D. W. (eds), Archaeological Survey in the Mediterranean Area (BAR S155; Oxford, 1983), 137–42Google Scholar.

112 Cavanagh–Mee–Renard 102–3.

113 Müller, K., Tiryns, Die Ergebnisse der Ausgrabungen des Instituts, iii: Die Architektur der Burg und des Palastes (Augsburg, 1930), 80–8Google Scholar.

114 Wiencke 27–9, 50, 55–6, 73, 75, 78, 111–12, 118–19, 140, 191–2.

115 Tartaron, T. F., Pullen, D. J., and Noller, J. F., ‘Rillenkarren at Vayia: geomorphology and a new class of Early Bronze Age fortified settlement in Southern Greece’, Antiquity, 80 (2006), 145–60CrossRefGoogle Scholar.

116 Cavanagh–Mee–Renard 100 FIG. 29.

117 Comparative studies: Triantaphyllou, S., A Bioarchaeological Approach to Prehistoric Cemetery Populations from Central and Western Macedonia (BAR S976; Oxford, 2001)Google Scholar; Papathanasiou, A., A Bioarchaeological Analysis of Neolithic Alepotrypa Cave, Greece (BAR S961; Oxford, 2001)Google Scholar; Angel, J. L., The People of Lerna (Washington, 1971)Google Scholar; id., ‘Health as a crucial factor in the changes from hunting to developed farming in the Eastern Mediterranean’, in M. N. Cohen and G. J. Armelagos (eds), Palaeopathology at the Origins of Agriculture (London, 1984), 54–56; Bisel, S. C. and Angel, J. L., ‘Health and nutrition in Mycenaean Greece: A study in human skeletal remains’, in Wilkie, N. C. and Coulson, W. D. E. (eds), Contributions to Aegean Archaeology (Dubuque, 1985), 197209Google Scholar; Musgrave, J. H. and Popham, M., ‘The Late Helladic IIIC intramural burials at Lefkandi, Euboea’, BSA 86 (1991), 269–96Google Scholar; Stravopodi, E., Manolis, S. K., and Neroutsis, A., “Μελέτη του ανθρώπινου σκελετικού υλικού από Σπήλαιο Λιμνών”, in Sampson, A. (ed.), Σπήλαιο των Λιμνών στα Καστρια Καλαβρύτων (Etaireia Peloponnesiakon Spoudon no. 7; Athens, 1997), 456–82Google Scholar.

118 Respective lesions on the third infant (213b) are not observable due to the incompleteness of the remains.

119 Triantaphyllou (n. 117), 144.

120 Ibid. 145; Triantaphyllou observed higher calculus and low caries rates in her early populations (EN, EBA), suggesting that the early populations consumed high levels of meat, while the diet of the late populations (LBA, EIA) was richer in carbohydrates.

121 Cavanagh–Mee–Renard 102.