Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T13:53:11.228Z Has data issue: false hasContentIssue false

Variability Of Thermohaline Circulation Under An Ice Shelf

Published online by Cambridge University Press:  20 January 2017

H.H. Hellmer*
Affiliation:
Alfred-Wegener-Institute for Polar and Marine Research, Postfach 12 01 61, Columbusstrasse, D-2850 Bremerhaven, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The production of Antarctic Bottom Water is mainly influenced by Ice Shelf Water, which is formed through the modification of shelf water masses under huge ice shelves. To simulate this modification a two-dimensional thermohaline circulation model has been developed for a section perpendicular to the ice-shelf edge. Hydrographic data from the Filchner Depression enter into the model as boundary conditions. In the outflow region they also serve as a verification of model results.

The standard solution reveals two circulation cells. The dominant one transports shelf water near the bottom toward the grounding line, where it begins to ascend along the inclined ice shelf. The contact with the ice shelf causes melting with a maximum rate of 1.5 m a−1 at the grounding line. Freezing and therefore the accumulation of “sea ice” at the bottom of the ice shelf occurs at the end of the melting zone at a rate on the order of 0.1 ma−1. Both rates are comparable with values estimated or predicted by models concerning ice-shelf dynamics.

As one example of model sensitivity to changing boundary conditions, a higher sea-ice production in the southern Weddell Sea, as might be expected for a general climatic cooling event, is assumed. The resultant decrease/ increase in temperature/salinity of the inflow (Western Shelf Water) reduces the circulation under the ice shelf and therefore the outflow of Ice Shelf Water by 40%. The maximum melting and freezing rate decreases by 0.1 ma−1 and 0.01 m a−1, respectively. and the freezing zone shifts toward the grounding line by 100 km.

In general the intensity of the circulation cells, the characteristics of Ice Shelf Water, the distribution of melting and freezing zones and the melting and freezing rates differ from the standard results with changing boundary conditions. These are the temperature and salinity of the inflow, the surface temperature at the top, and the extension and morphology of the ice shelf.

Type
Research Article
Copyright
Copyright © International Glaciological Society 1990