Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:53:08.441Z Has data issue: false hasContentIssue false

Forecasting age distribution of death counts: an application to annuity pricing

Published online by Cambridge University Press:  17 September 2019

Han Lin Shang*
Affiliation:
Research School of Finance, Actuarial Studies and Statistics, Australian National University, Acton, Canberra, ACT 2601, Australia
Steven Haberman
Affiliation:
Cass Business School, City, University of London
*
*Correspondence to: Han L. Shang, Research School of Finance, Actuarial Studies and Statistics, Australian National University, Level 4, Building 26C, Kingsley Street, Acton, Canberra, ACT 2601, Australia. Tel: +61(2) 612 50535. Fax: +61(2) 612 50087. E-mail: [email protected]

Abstract

We consider a compositional data analysis approach to forecasting the age distribution of death counts. Using the age-specific period life-table death counts in Australia obtained from the Human Mortality Database, the compositional data analysis approach produces more accurate 1- to 20-step-ahead point and interval forecasts than Lee–Carter method, Hyndman–Ullah method and two naïve random walk methods. The improved forecast accuracy of period life-table death counts is of great interest to demographers for estimating survival probabilities and life expectancy, and to actuaries for determining temporary annuity prices for various ages and maturities. Although we focus on temporary annuity prices, we consider long-term contracts that make the annuity almost lifetime, in particular when the age at entry is sufficiently high.

Type
Paper
Copyright
© Institute and Faculty of Actuaries 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aburto, J. M. & van Raalte, A. A. (2018). Lifespan dispersion in times of life expectancy fluctuation: the case of central and eastern Europe. Demography, 55, 20712096.CrossRefGoogle ScholarPubMed
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B, 44(2), 139177.Google Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall, London.CrossRefGoogle Scholar
Aitchison, J. & Shen, S. M. (1980). Logistic-normal distributions: some properties and uses. Biometrika, 67(2), 261272.CrossRefGoogle Scholar
Alho, J. M. & Spencer, B. D. (2005). Statistical Demography and Forecasting. Springer, New York.Google Scholar
Bengtsson, T. (2003). The need for looking far back in time when predicting future mortality trends. In Bengtsson, T. & Keilman, N. (Eds.), Perspectives on Mortality Forecasting. Swedish National Social Insurance Agency, Stockholm.Google Scholar
Bergeron-Boucher, M.-P., Canudas-Romo, V., Oeppen, J. & Vaupel, J. W. (2017). Coherent forecasts of mortality with compositional data analysis. Demographic Research, 37, 527566.10.4054/DemRes.2017.37.17CrossRefGoogle Scholar
Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22(3), 547581.CrossRefGoogle Scholar
Booth, H. & Tickle, L. (2008). Mortality modelling and forecasting: a review of methods. Annals of Actuarial Science, 3(1–2), 343.10.1017/S1748499500000440CrossRefGoogle Scholar
Brouhns, N., Denuit, M. & Vermunt, J. (2002). A Poisson log-bilinear regression approach to the construction of projected life tables. Insurance: Mathematics and Economics, 31(3), 373393.Google Scholar
Cairns, A. J. G., Blake, D. & Dowd, K. (2008). Modelling and management of mortality risk: a review. Scandinavian Actuarial Journal, 2008(2–3), 79113.CrossRefGoogle Scholar
Cannon, E. & Tonks, I. (2008). Annuity Markets. Oxford University Press, Oxford.10.1093/acprof:oso/9780199216994.001.0001CrossRefGoogle Scholar
Canudas-Romo, V. (2010). Three measures of longevity: time trends and record values. Demography, 47(2), 299312.CrossRefGoogle ScholarPubMed
Chatfield, C. (1993). Calculating interval forecasts. Journal of Business & Economics Statistics, 11(2), 121135.Google Scholar
Chatfield, C. (2000). Time-Series Forecasting. Chapman & Hall, Boca Raton, Florida.10.1201/9781420036206CrossRefGoogle Scholar
Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C. & Caselli, G. (2005). Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension. Demography, 42(2), 243258.CrossRefGoogle ScholarPubMed
Cramér, H. & Wold, H. (1935). Mortality variations in Sweden. Scandinavian Actuarial Journal, 1935(3–4), 161241.CrossRefGoogle Scholar
Debón, A., Chaves, L., Haberman, S. & Villa, F. (2017). Characterization of between-group inequality of longevity in EU countries. Insurance: Mathematics and Economics, 75, 151165.Google Scholar
Delicado, P. (2011). Dimensionality reduction when data are density functions. Computational Statistics and Data Analysis, 55(1), 401420.10.1016/j.csda.2010.05.008CrossRefGoogle Scholar
Denuit, M., Devolder, P. & Goderniaux, A.-C. (2007). Securitization of longevity risk: pricing survivor bonds with Wang transform in the Lee-Carter framework. The Journal of Risk and Insurance, 74(1), 87113.10.1111/j.1539-6975.2007.00203.xCrossRefGoogle Scholar
Dickson, D. C. M., Hardy, M. R. & Waters, H. R. (2009). Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, Cambridge.10.1017/CBO9780511800146CrossRefGoogle Scholar
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueraz, G. & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279300.CrossRefGoogle Scholar
Filzmoser, P., Hron, K. & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20(6), 621632.CrossRefGoogle Scholar
Gneiting, T. & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1, 125151.10.1146/annurev-statistics-062713-085831CrossRefGoogle Scholar
Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction and estimation. Journal of the American Statistical Association, 102(477), 359378.CrossRefGoogle Scholar
Horváth, L. & Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer, New York.CrossRefGoogle Scholar
Human Mortality Database (2019). University of California, Berkeley, USA; Max Planck Institute for Demographic Research, Germany. Available online at the address http://www.mortality.org [accessed 8-May-2017].Google Scholar
Hurvich, C. M. & Tsai, C.-L. (1993). A corrected Akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis, 14(3), 271279.CrossRefGoogle Scholar
Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., Yasmeen, F., Team, R.C., Ihaka, R., Reid, D., Shaub, D., Tang, Y. & Zhou, Z. (2019). forecast: forecasting functions for time series and linear models. R package version 8.7. Available online at the address https://CRAN.R-project.org/package=forecast.Google Scholar
Hyndman, R. J. & Booth, H. (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration. International Journal of Forecasting, 24, 323342.CrossRefGoogle Scholar
Hyndman, R. J. & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27(3).CrossRefGoogle Scholar
Hyndman, R. J. & Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for functional data. Journal of Computational and Graphical Statistics, 19(1), 2945.CrossRefGoogle Scholar
Hyndman, R. J. & Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics and Data Analysis, 51(10), 49424956.CrossRefGoogle Scholar
Kokoszka, P., Miao, H., Petersen, A. & Shang, H. L. (2019). Forecasting of density functions with an application to cross-sectional and intraday returns. International Journal of Forecasting, 35(4), 13041317.CrossRefGoogle Scholar
Lee, R. D. (1998). Probabilistic approach to population forecasting. Population and Development Review, 24(419), 156190.10.2307/2808055CrossRefGoogle Scholar
Lee, R. D. (2003). Mortality forecasts and linear life expectancy trends, Working Paper No. 03-25, University of California, Berkeley. Available online at the address https://escholarship.org/uc/item/3sd9m7d5.Google Scholar
Lee, R. D. & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87(419), 659671.Google Scholar
Lee, R. D. & Miller, T. (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography, 38(4), 537549.10.1353/dem.2001.0036CrossRefGoogle ScholarPubMed
Oeppen, J. (2008). Coherent forecasting of multiple-decrement life tables: a test using Japanese cause of death data. In European Population Conference, Barcelona, Spain. Available online at the address http://epc2008.princeton.edu/papers/80611.Google Scholar
Oeppen, J. & Vaupel, J. W. (2002). Broken limits to life expectancy. Demography, 296(5570), 10291031.Google ScholarPubMed
Paparoditis, E. (2018). Sieve bootstrap for functional time series. The Annals of Statistics, 46(6B), 35103538.CrossRefGoogle Scholar
Pollard, J. H. (1987). Projection of age-specific mortality rates. Population Bulletin of the United Nations, 21–22, 5569.Google Scholar
Preston, S., Heuveline, P. & Guillot, M. (2001). Demography: Measuring and Modeling Population Processes. Blackwell Publishers, Oxford, UK.Google Scholar
R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at the address https://www.R-project.org/.Google Scholar
Renshaw, A. E. & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255272.Google Scholar
Robine, J.-M. (2001). Redefining the stages of the epidemiological transition by a study of the dispersion of life spans: the case of France. Population: An English Selection, 13(1), 173193.Google Scholar
Salish, N. & Gleim, A. (2015). Forecasting methods for functional time series, technical report, University of Cologne. Available online at the address http://www.eco.uc3m.es/temp/paper%20Salish.pdf.Google Scholar
Scealy, J. L., de Caritat, P., Grunsky, E. C., Tsagris, M. T. & Welsh, A. H. (2015). Robust principal component analysis for power transformed compositional data. Journal of the American Statistical Association, 110(509), 136148.CrossRefGoogle Scholar
Scealy, J. L. & Welsh, A. H. (2017). A directional mixed effects model for compositional expenditure data. Journal of the American Statistical Association, 112(517), 2436.CrossRefGoogle Scholar
Shang, H. L. (2018). Bootstrap methods for stationary functional time series. Statistics and Computing, 28(1), 110.10.1007/s11222-016-9712-8CrossRefGoogle Scholar
Shang, H. L., Booth, H. & Hyndman, R. J. (2011). Point and interval forecasts of mortality rates and life expectancy: a comparison of ten principal component methods. Demographic Research, 25(5), 173214.CrossRefGoogle Scholar
Shang, H. L. & Haberman, S. (2017). Grouped multivariate and functional time series forecasting: an application to annuity pricing. Insurance Mathematics & Economics, 75, 166179.CrossRefGoogle Scholar
Tabeau, E. (2001). A review of demographic forecasting models for mortality. In Tabeau, E., Van Den Berg Jeths, A. & Heathcote, C. (Eds.), Forecasting Mortality in Developed Countries: Insights from a Statistical, Demographic and Epidemiological Perspective (pp. 132). Kluwer Academic Publishers, Dordrecht.10.1007/0-306-47562-6CrossRefGoogle Scholar
Tulkapurkar, S., Li, N. & Boe, C. (2000). A universal pattern of mortality decline in the G7 countries. Nature, 405(6788), 789792.CrossRefGoogle Scholar
van Raalte, A. A. & Caswell, H. (2013). Perturbation analysis of indices of lifespan variability. Demography, 50(5), 16151640.CrossRefGoogle ScholarPubMed
van Raalte, A. A., Martikainen, P. & Myrskylä, M. (2014). Lifespan variation by occupational class: compression or stagnation over time? Demography, 51, 7395.10.1007/s13524-013-0253-xCrossRefGoogle ScholarPubMed
Vaupel, J. W., Zhang, Z. & van Raalte, A. A. (2011). Life expectancy and disparity: an international comparison of life table data. BMJ Open, 1(1), e000128.CrossRefGoogle ScholarPubMed
White, K. M. (2002). Longevity advances in high-income countries, 1955–96. Population and Development Review, 28(1), 5976.CrossRefGoogle Scholar
Wilmoth, J. R. (1995). Are mortality projections always more pessimistic when disaggregated by cause of death? Mathematical Population Studies, 5(4), 293319.10.1080/08898489509525409CrossRefGoogle ScholarPubMed
Wilmoth, J. R. & Horiuchi, S. (1999). Rectangularization revisited: variability of age at death within human populations. Demography, 36(4), 475495.10.2307/2648085CrossRefGoogle ScholarPubMed
Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer. The Review of Economic Studies, 32(2), 137150.CrossRefGoogle Scholar
Zivot, E. & Wang, J. (2006). Modeling Financial Time Series with S-PLUS. Springer, New York.Google Scholar
Supplementary material: PDF

Shang and Haberman supplementary material

Shang and Haberman supplementary material 1

Download Shang and Haberman supplementary material(PDF)
PDF 84.2 KB
Supplementary material: File

Shang and Haberman supplementary material

Shang and Haberman supplementary material 2

Download Shang and Haberman supplementary material(File)
File 7.3 KB