Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T12:39:33.410Z Has data issue: false hasContentIssue false

An actuarial investigation into maternal hospital cost risk factors for public patients

Published online by Cambridge University Press:  20 July 2017

Jananie William*
Affiliation:
Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra ACT 0200, Australia
Michael A. Martin
Affiliation:
Research School of Finance, Actuarial Studies and Statistics, Australian National University, Canberra ACT 0200, Australia
Catherine Chojenta
Affiliation:
Research Centre for Generational Health & Ageing, The University of Newcastle, Australia
Deborah Loxton
Affiliation:
Research Centre for Generational Health & Ageing, The University of Newcastle, Australia
*
*Correspondence to: Jananie William, Research School of Finance, Actuarial Studies and Statistics, College of Business and Economics, Australian National University, Canberra ACT 0200, Australia. Tel: +61 2 6125 7311; E-mail: [email protected]

Abstract

We investigate an actuarial approach to identifying the factors impacting government-funded maternal hospital costs in Australia, with a focus on women who experience adverse birth outcomes. We propose a two-phase modelling methodology that adopts actuarial methods from typical insurance claim cost modelling and extends to other statistical techniques to account for the large volume of covariates available for modelling. Specifically, Classification and Regression Trees and generalised linear mixed models are employed to analyse a data set that links longitudinal survey and administrative data from a large sample of women. The results show that adverse births are a statistically significant risk factor affecting maternal hospital costs in the antenatal and delivery periods. Other significant cost risk factors in the delivery period include mode of delivery, private health insurance status, diabetes, smoking status, area of residence and onset of labour. We demonstrate the efficacy of using actuarial techniques in non-traditional areas and highlight how the results can be used to inform public policy.

Type
Papers
Copyright
© Institute and Faculty of Actuaries 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E., Melvin, C., Raskind-Hood, C., Joski, P. & Galactionova, E. (2011). Infant delivery costs related to maternal smoking: an update. Nicotine & Tobacco Research, 13, 627637.CrossRefGoogle ScholarPubMed
Alder, J., Fink, N., Bitzer, J., Hosli, I. & Holzgreve, W. (2007). Depression and anxiety during pregnancy: a risk factor for obstetric, fetal and neonatal outcome? A critical review of the literature. Journal of Maternal-Fetal & Neonatal Medicine, 20(3), 189209.CrossRefGoogle ScholarPubMed
Australian Institute of Health and Welfare (2014). Australia’s health 2014. Australian Institute of Health and Welfare, Canberra.Google Scholar
Australian Institute of Health and Welfare (2016). Australia’s health 2016. Australian Institute of Health and Welfare, Canberra.Google Scholar
Australian Longitudinal Study on Women’s Health (ALSWH) (2014). Technical report 2014. University of Queensland and The University of Newcastle, Newcastle.Google Scholar
Bateman, B.T. & Simpson, L.L. (2006). Higher rate of stillbirth at the extremes of reproductive age: a large nationwide sample of deliveries in the United States. American Journal of Obstetrics and Gynecology, 194(3), 840845.CrossRefGoogle ScholarPubMed
Battin, M. & Sadler, L., Australia New Zealand Neonatal Net (2010). Neonatal intensive care utilization and neonatal outcome of infants born to women aged 40 years and over in New Zealand. Acta Paediatrica, 99(2), 219224.CrossRefGoogle ScholarPubMed
Bhattacharya, S., Townend, J., Shetty, A., Campbell, D. & Bhattacharya, S. (2008). Does miscarriage in an initial pregnancy lead to adverse obstetric and perinatal outcomes in the next continuing pregnancy? BJOG: An International Journal of Obstetrics and Gynaecology, 115(13), 16231629.CrossRefGoogle Scholar
Brockman, M. & Wright, T. (1992). Statistical motor rating: making effective use of your data. Journal of the Institute of Actuaries, 119, 457543.CrossRefGoogle Scholar
Bryant, R. (2008). Improving maternity services in Australia. Department of Health and Ageing, Canberra.Google Scholar
Cahill, K., Hartmann-Boyce, J. & Perera, R. (2015). Incentives for smoking cessation. Cochrane Database of Systematic Reviews 2015, Issue 5. Art. No.: CD004307.Google Scholar
Centre for Health Record Linkage (CHeReL) (2015). Data dictionaries for Centre for Health Record Linkage. Available online at the address http://www.cherel.org.au/data-dictionaries [accessed 29-Nov-2016].Google Scholar
Cheng, Y.W., Chung, J.H., Kurbisch-Block, I., Inturrisi, M., Shafer, S. & Caughey, A.B. (2008). Gestational weight gain and gestational diabetes mellitus perinatal outcomes. Obstetrics and Gynecology, 112(5), 10151022.CrossRefGoogle ScholarPubMed
Chojenta, C. (2013). Prevalence, Antecedents and Perceptions of Efficacy of Treatments of Postnatal Depression in Australia. PhD. University of Newcastle, Newcastle.Google Scholar
Chollet, D., Newman, J. & Sumner, A. (1996). The cost of poor birth outcomes in employer-sponsored health plans. Medical Care, 34(12), 12191234.CrossRefGoogle ScholarPubMed
Chu, S.Y., Kim, S.Y., Lau, J., Schmid, C.H., Dietz, P.M., Callaghan, W.M. & Curtis, K.M. (2007). Maternal obesity and risk of stillbirth: a metaanalysis. American Journal of Obstetrics and Gynecology, 197(3), 223228.CrossRefGoogle ScholarPubMed
D’Angelo, D., Whitehead, N., Helms, K., Barfield, W. & Ahluwalia, I. (2011). Birth outcomes of intended pregnancies among women who used assisted reproductive technology, ovulation stimulation, or no treatment. Fertility and Sterility, 96(2), 314320.CrossRefGoogle ScholarPubMed
Declercq, E., Luke, B., Belanoff, C., Cabral, H., Diop, H., Gopal, D., Hoang, L., Kotelchuck, M., Stern, J. & Hornstein, M. (2015). Perinatal outcomes associated with assisted reproductive technology: the Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART). Fertility and Sterility, 103(4), 888895.CrossRefGoogle ScholarPubMed
de Jong, P. & Heller, G.Z. (2008). Generalized Linear Models for Insurance Data. Volume 17. Cambridge University Press, UK, Cambridge.CrossRefGoogle Scholar
Delbaere, I., Verstraelen, H., Goetgeluk, S., Martens, G., De Backer, G. & Temmerman, M. (2007). Pregnancy outcome in primiparae of advanced maternal age. European Journal of Obstetrics and Gynecology, 135(1), 4146.CrossRefGoogle ScholarPubMed
Duley, L. (2009). The global impact of pre-eclampsia and eclampsia. Seminars in Perinatology, 33(3), 130137.CrossRefGoogle ScholarPubMed
Dunietz, G., Holzman, C., McKane, P., Li, C., Boulet, S., Todem, D., Kissin, D., Copeland, G., Bernson, D., Sappenfield, W. & Diamond, M. (2015). Assisted reproductive technology and the risk of preterm birth among primiparas. Fertility and Sterility, 103(4), 974979.CrossRefGoogle ScholarPubMed
Eldridge, D. & Sedgwick, K. (2016). Australia’s Mothers and Babies 2014 – In Brief. Australian Institute of Health and Welfare, Canberra.Google Scholar
Ellis, R., Fiebig, D., Johar, M., Jones, G. & Savage, E. (2013). Explaining health care expenditure variation: large-sample evidence using linked survey and health administrative data. Health Economics, 22(9), 10931110.CrossRefGoogle ScholarPubMed
Esplin, M.S., O’Brien, E., Fraser, A., Kerber, R.A., Clark, E., Simonsen, S.E., Hollngren, C., Mineau, G.P. & Varner, M.W. (2008). Estimating recurrence of spontaneous preterm delivery. Obstetrics and Gynecology, 112(3), 516523.CrossRefGoogle ScholarPubMed
Evans, M., Palta, M., Sadek, M., Weinstein, M.R. & Peters, M.E. (1998). Associations between family history of asthma, bronchopulmonary dysplasia, and childhood asthma in very low birth weight children. American Journal of Epidemiology, 148(5), 460466.CrossRefGoogle ScholarPubMed
Flenady, V., Koopmans, L., Middleton, P., Frøen, F., Smith, G.C., Gibbons, K., Coory, M., Gordon, A., Ellwood, D., McIntyre, H.D., Fretts, R. & Ezzati, M. (2011). Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. The Lancet, 377(9774), 13311340.CrossRefGoogle ScholarPubMed
Frederick, I., Williams, M., Sales, A., Martin, D. & Killien, M. (2008). Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight. Maternal and Child Health Journal, 12(5), 557567.CrossRefGoogle ScholarPubMed
Frees, E., Jin, X. & Lin, X. (2013). Actuarial applications of multivariate two-part regression models. Annals of Actuarial Science, 7(2), 258287.CrossRefGoogle Scholar
Gilbert, W.M., Nesbitt, T.S. & Danielsen, B. (2003). The cost of prematurity: quantification by gestational age and birth weight. The American College of Obstetricians and Gynecologists, 102, 488492.Google ScholarPubMed
Gold, K.J., Sen, A. & Xu, X. (2013). Hospital costs associated with stillbirth delivery. Maternal Child Health Journal, 17, 18351841.CrossRefGoogle ScholarPubMed
Goy, J., Dodds, L., Rosenberg, M.W. & King, W.D. (2008). Health-risk behaviours: examining social disparities in the occurrence of stillbirth. Paediatric and Perinatal Epidemiology, 22(4), 314320.CrossRefGoogle ScholarPubMed
Haberman, S. & Renshaw, A. E. (1996). Generalized linear models and actuarial science. The Statistician, 45(4), 407436.CrossRefGoogle Scholar
Häger, R., Daltveit, A., Hofoss, D., Nilsen, S., Kolaas, T., Øian, P. & Henriksen, T. (2004). Complications of caesarean deliveries: rates and risk factors. American Journal of Obstetrics and Gynecology, 190(2), 428434.CrossRefGoogle ScholarPubMed
Hajek, P., Stead, L., West, R., Jarvis, M., Hartmann-Boyce, J. & Lancaster, T. (2013). Relapse prevention interventions for smoking cessation. Cochrane Database of Systematic Reviews 2013, Issue 8, Art No.: CD003999.Google Scholar
Hauger, M.S., Gibbons, L., Vik, T. & Belizan, J.M. (2008). Prepregnancy weight status and the risk of adverse pregnancy outcome. Acta Obstetricia Et Gynecologica Scandinavica, 87(9), 953959.CrossRefGoogle ScholarPubMed
Hedegaard, M. (2002). The effects of antenatal stress and anxiety on pregnancy outcome. Journal of Affective Disorders, 68(1), 9596.Google Scholar
Hilder, L., Zhichao, Z., Parker, M., Jahan, S. & Chambers, G. (2014). Australia’s Mothers and Babies 2012. Australian Institute of Health and Welfare, Canberra.Google Scholar
Hogberg, L. & Cnattingius, S. (2007). The influence of maternal smoking habits on the risk of subsequent stillbirth: is there a causal relation? BJOG: An International Journal of Obstetrics and Gynaecology, 114(6), 699704.CrossRefGoogle Scholar
Howson, C., Kinney, M. & Lawn, J. (2012). Born too soon: the global action report on preterm birth. World Health Organisation, Geneva.Google Scholar
Independent Hospital Pricing Authority (2015). National efficient price determination 2015-16. Independent Hospital Pricing Authority, Canberra.Google Scholar
Johar, M., Jones, G. & Savage, E. (2012). Healthcare expenditure profile of older Australians: evidence from linked survey and health administrative data. Economic Papers, 31(4), 451463.CrossRefGoogle Scholar
Kesmodel, U., Wisborg, K., Olsen, S.F., Henriksen, T.B. & Secher, N.J. (2002). Moderate alcohol intake during pregnancy and the risk of stillbirth and death in the first year of life. American Journal of Epidemiology, 155(4), 305312.CrossRefGoogle ScholarPubMed
Luke, B., Bigger, H., Leurgans, S. & Sietsema, D. (1996). The cost of prematurity: a case-control study of twins vs singletons. American Journal of Public Health, 86(6), 809814.CrossRefGoogle ScholarPubMed
Lumley, J., Chamberlain, C., Dowswell, T., Oliver, S., Oakley, L. & Watson, L. (2009). Interventions for promoting smoking cessation during pregnancy. Cochrane Database of Systematic Reviews 2009, Issue 3. Art No.: CD001055.Google Scholar
MacDorman, M., Menacker, F. & Declercq, E. (2008). Caesarean birth in the United States: epidemiology, trends and outcomes. Clinics in Perinatology, 35(2), 293307.CrossRefGoogle ScholarPubMed
McDonald, A., Armstrong, B. & Sloan, M. (1992). Cigarette, alcohol, and coffee consumption and prematurity. American Journal of Public Health, 82(1), 8790.CrossRefGoogle ScholarPubMed
Measey, M., Charles, A., d’Espaignet, E., Harrison, C., Deklerk, N. & Douglass, C. (2007). Aetiology of stillbirth: unexplored is not unexplained. Australian and New Zealand Journal of Public Health, 31(5), 444449.CrossRefGoogle Scholar
Medicare Australia (2016). Medicare Benefits Schedule Book. Medicare Australia, Canberra.Google Scholar
Mistry, H., Heazell, A.E.P., Vincent, O. & Roberts, T. (2013). A structured review and exploration of the healthcare costs associated with stillbirth and a subsequent pregnancy in England and Wales. BMC Pregnancy & Childbirth, 13, 236.CrossRefGoogle Scholar
Morgen, C.S., Bjork, C., Andersen, P.K., Mortensen, L.H. & Andersen, A.M.N. (2008). Socioeconomic position and the risk of preterm birth – a study within the Danish National Birth Cohort. International Journal of Epidemiology, 37(5), 11091120.CrossRefGoogle ScholarPubMed
NSW Ministry of Health (2010). Towards normal birth. Available online at the address http://www0.health.nsw.gov.au/policies/pd/2010/pdf/PD2010_045.pdf [accessed 29-Nov-2016].Google Scholar
Odendaal, H.J., Steyn, D.W., Elliott, A. & Burd, L. (2008). Combined effects of cigarette smoking and alcohol consumption on perinatal outcome. Gynecologic and Obstetric Investigation, 67(1), 18.CrossRefGoogle ScholarPubMed
O’Leary, C., Bower, C., Knuiman, M. & Stanley, F. (2007). Changing risks of stillbirth and neonatal mortality associated with maternal age in Western Australia 1984–2003. Paediatric and Perinatal Epidemiology, 21(6), 541549.CrossRefGoogle ScholarPubMed
Olsen, J., Pereira, A.d.C. & Olsen, S. (1991). Does maternal tobacco smoking modify the effect of alcohol on fetal growth? American Journal of Public Health, 81(1), 6973.CrossRefGoogle ScholarPubMed
Organisation for Economic Co-Operation and Development (OECD) (2015). Health at a Glance 2015: OECD Indicators. OECD, Paris.Google Scholar
Petersen, C.B., Mortensen, L.H., Morgen, C.S., Madsen, M., Schnor, O., Arntzen, A., Gissler, M., Cnattingius, S. & Andersen, A.M.N. (2009). Socio-economic inequality in preterm birth: a comparative study of the Nordic countries from 1981 to 2000. Paediatric and Perinatal Epidemiology, 23(1), 6675.CrossRefGoogle ScholarPubMed
Petrou, S. & Khan, K. (2012). Economic costs associated with moderate and late preterm birth: primary and secondary evidence. Seminars in Fetal & Neonatal Medicine, 17, 170178.CrossRefGoogle ScholarPubMed
Powers, J., Loxton, D., O’Mara, A., Chojenta, C. & Ebert, L. (2013). Regardless of where they give birth, women living in non-metropolitan areas are less likely to have an epidural than their metropolitan counterparts. Women and Birth, 26(2), e77e81.CrossRefGoogle ScholarPubMed
Reddy, U.M. (2007). Prediction and prevention of recurrent stillbirth. Obstetrics and Gynecology, 110(5), 11511164.CrossRefGoogle ScholarPubMed
Ringborg, A., Berg, J., Norman, M., Westgren, M. & Jonsson, B. (2006). Preterm birth in Sweden: What are the average lengths of hospital stay and the associated inpatient costs? Acta Paediatrica, 95(12), 15501555.CrossRefGoogle ScholarPubMed
Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sauber-Schatz, E., Sappenfield, W., Grigorescu, V., Kulkarni, A., Zhang, Y., Salihu, H., Rubin, L., Kirby, R., Jamieson, D. & Macaluso, M. (2012). Obesity, assisted reproductive technology, and early preterm birth—Florida, 2004–2006. American Journal of Epidemiology, 176(10), 886896.CrossRefGoogle ScholarPubMed
Smith, G.C.S., Pell, J.P. & Dobbie, R. (2003). Caesarean section and risk of unexplained stillbirth in subsequent pregnancy. The Lancet, 362(9398), 17791784.CrossRefGoogle ScholarPubMed
Stead, L. & Lancaster, T. (2012). Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database of Systematic Reviews.Google Scholar
Stotts, A., Groff, J., Velasquez, M., Benjamin-Garner, R., Green, C., Carbonari, J. & DiClemente, C. (2009). Ultrasound feedback and motivational interviewing targeting smoking cessation in the second and third trimesters of pregnancy. Nicotine & Tobacco Research, 11(8), 961968.CrossRefGoogle ScholarPubMed
Surkan, P.J., Stephansson, O., Dickman, P.W. & Cnattingius, S. (2004). Previous preterm and small-for-gestational-age births and the subsequent risk of stillbirth. New England Journal of Medicine, 350(8), 777785.CrossRefGoogle ScholarPubMed
Thame, M., Osmond, C., Wilks, R.J., Bennett, F.I., McFarlane-Anderson, N. & Forrester, T.E. (2000). Blood pressure is related to placental volume and birth weight. Hypertension, 35(2), 662667.CrossRefGoogle ScholarPubMed
Thernau, T. & Atkinson, E. (2015). An introduction to recursive partitioning using the RPART routine. Available online at the address https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf [accessed 29-Nov-2016].Google Scholar
Venables, W. & Ripley, B. (2002). Modern Applied Statistics With S. Springer, USA, New York.CrossRefGoogle Scholar
William, J. (2016). The Maternal Health System Costs Of Adverse Birth Outcomes. ANU PhD Actuarial Studies, Canberra.Google Scholar
William, J., Chojenta, C., Martin, M.A. & Loxton, D. (2017). An actuarial investigation into maternal out-of-hospital cost risk factors. Annals of Actuarial Science (Submitted).Google Scholar
Wisborg, K., Barklin, A., Hedegaard, M. & Henriksen, T.B. (2008). Psychological stress during pregnancy and stillbirth: prospective study. BJOG: An International Journal of Obstetrics & Gynaecology, 115(7), 882885.CrossRefGoogle ScholarPubMed
Wisborg, K., Kesmodel, U., Henriksen, T.B., Olsen, S.F. & Secher, N.J. (2001). Exposure to tobacco smoke in utero and the risk of stillbirth and death in the first year of life. American Journal of Epidemiology, 154(4), 322327.CrossRefGoogle ScholarPubMed
World Health Organisation (WHO) (2015). WHO Statement on Caesarean Section Rates. WHO, Geneva.Google Scholar