Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T12:43:02.789Z Has data issue: false hasContentIssue false

Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Central–Eastern Poland)

Published online by Cambridge University Press:  18 November 2013

Wojciech Pęczuła*
Affiliation:
Department of Hydrobiology, University of Life Sciences, Dobrzańskiego 37, Lublin 20-062, Poland
Małgorzata Poniewozik
Affiliation:
Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, Konstantynów 1H, Lublin 20-708, Poland
Agnieszka Szczurowska
Affiliation:
Department of General Ecology, University of Life Sciences, Akademicka 15, Lublin 20-950, Poland
*
*Corresponding author: [email protected]
Get access

Abstract

Using data from nine lakes, sampled between 2002 and 2010, as well as literature we have analysed blooms of Gonyostomum semen (Ehr.) Diesing in a new spreading area (Polesie region, Central–Eastern Poland). We tried to determine habitat suitability for high biomass of the species, including both physicochemical and morphometric features. High biomass of Gonyostomum (>1.4 mg.L−1) was found in three groups of coloured water bodies: (a) very small (<0.002 km2) peat pits with low pH values and mineral content; (b) larger ponds with neutral pH values and intermediate conductivity; (c) natural lakes with intermediate parameters in terms of area, pH and mineral content. There were no statistical differences regarding the values of the species biomass among the groups of lakes. Gonyostomum biomass was closely positively correlated with water colour, whereas it was weakly negatively correlated with lake area and depth. The results show that G. semen in a new spreading area bloomed in a broad spectrum of freshwater habitats.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angeler, D.G., Trigal, C., Drakare, S., Johnson, R.K. and Goedkoop, W., 2010. Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia, 164, 231241.CrossRefGoogle ScholarPubMed
Chmiel, S., 2009. Hydrochemical evaluation of dystrophy of the water bodies in the Łęczna and Włodawa area in the years 2000–2008. Limnol. Rev., 9, 153158.Google Scholar
Cowles, R.P. and Brambel, C.E., 1936. A study of the environmental conditions in a bog pond with special reference to the diurnal vertical distribution of Gonyostomum semen. Biol. Bull., 71, 286298.CrossRefGoogle Scholar
Cronberg, G., Lindmark, G. and Björk, S., 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes – an effect of acidification? Hydrobiologia, 161, 217236.CrossRefGoogle Scholar
Druvietis, I., Spriņǵe, G., Briede, A., Kokorīte, I. and Parele, E., 2010. A comparative assessment of the bog aquatic environment of the Ramsar site of Teiči Neture Reserve and North Vidzeme Biosphere Reserve, Latvia. In: Klavins, M. (ed.) Mires and Peat, University of Latvia Press, Riga, 1940.Google Scholar
Ehrenberg, C.G., 1853. Über die neuerlich bei Berlin vorgekommenen neuen Formen des mikropischen Lebens. Ber. Bekanntm. Verh. Königl. Preuss. Akad. Wiss. Berlin., 1853, 183194.Google Scholar
Eloranta, P. and Jarvinen, M., 1991. Growth of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae): results from capture experiments. Int. Ver. Theor. Ang. Limnol. Verh., 24, 26572659.Google Scholar
Findlay, D.L., Paterson, M.J., Hendzel, L.L. and Kling, H.J., 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia, 533, 243252.CrossRefGoogle Scholar
Fott, B., 1952. The microflora of Oravian peat bogs. Preslia (Prague), 24, 189209.Google Scholar
Golterman, H.L., 1975. Physiological Limnology, Elsevier Scientific Publishing, Amsterdam, 489 p.Google Scholar
Grigorszky, I., Dévai, Gy., Kiss, K.T., Tóthmérész, B., Gligora, M., Plenkovic-Moraj, A., Korlajka, Kraj, Béres, V.B., Schnitchen, Cs., Borics, G. and Nagy, A.S. 2010. Importance of Acidic phosphatase activity in P supply and Gonyostomum semen Ehrenbergh (Raphidophyta) occurrence in a Hungarian peat bog, Keleméri Kis-Mohos (NE Hungary). Acta Biol. Hung., 61, 111121.CrossRefGoogle Scholar
Hansson, L.A., 1996. Behavioural response in plants: adjustment in algal recruitment induced by herbivores. Proc. R. Soc. Lond., 263, 12411244.CrossRefGoogle Scholar
Hansson, L.A., 2000. Synergistic effects of food chain dynamics and induced behavioral responces in aquatic ecosystems. Ecology, 81, 842851.CrossRefGoogle Scholar
Harasimiuk, M., Michalczyk, Z., Turczyński, M. (eds), 1998. Jeziora łęczyńsko-włodawskie, Monografia przyrodnicza, Biblioteka Monitoringu Środowiska, Lublin, 176 p. (in Polish).Google Scholar
Hassdenteufelová, V., 1955. Protistological investigation of Novozámecký fishpond. Ochrana přírody, Praha, 10, 209216.Google Scholar
Havens, K.E., 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J. Plankton Res., 11, 13211327.CrossRefGoogle Scholar
Hehmann, A., Krienitz, l. and Koschel, R., 2001. Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia, 448, 8396.CrossRefGoogle Scholar
Hermanowicz, W., Dojlido, J., Dożańska, W., Koziorowski, B. and Zerbe, J., 1999. Physical-chemical Investigation of Water and Sewage, Wydawnictwo Arkady, Warszawa, 556 p. (in Polish).Google Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403424.CrossRefGoogle Scholar
Hongve, D., Løvstad, Ø. and Bjørndalen, K., 1988. Gonyostomum semen – a new nuisance to bathers in Norwegian lakes. Verh. Int. Verein. Limnol., 23, 430434.Google Scholar
Hörnström, E., 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia, 470, 115126.CrossRefGoogle Scholar
Hutorowicz, A., 2001. Fitoplankton humusowego jeziora Smolak na tle zmian warunków fizyczno-chemicznych wywołanych wapnowaniem i nawożeniem. Idee Ekologiczne, 14, 3130 (in Polish).Google Scholar
Hutorowicz, A., Szeląg-Wasielewska, E., Grabowska, M., Owsianny, P.M., Pęczuła, W. and Luścińska, M., 2006. The occurance of Gonyostomum semen (Raphidophyceae) in Poland. Fragm. Flor. Geobot. Pol., 13, 399407 (in Polish with English summary).Google Scholar
ISO 10260: 1992. Water quality – measurement of biochemical parameters – spectrometric determination of the chlorophyll-a concentration.
Johansson, K.S.L., Vrede, T., Lebret, K. and Johnson, R.K., 2013. Zooplankton feeding on the nuisance flagellate Gonyostomum semen. PLoS ONE, 8, e62557. doi: 10.1371/journal.pone.0062557.CrossRefGoogle ScholarPubMed
Jones, R.I., 1998. Phytoplankton, primary production and nutrient cycling. In: Hessen, D.O. and Tranvik, L. (eds.), Aquatic Humic Substances. Ecology and Biogeochemistry, Springer-Verlag, Berlin, Heidelberg, 145175.CrossRefGoogle Scholar
Kato, S., 1991. Geographic distribution of freshwater Raphidophycean Algae in Japan and the effect of pH on their growth. Japan J. Phycol., 39, 179183.Google Scholar
Koreivienė, J., Kasperovičienė, J. and Karosienė, J., 2012. Morphological variability of raphidophycean algae in the lakes of Lithuania. In: Wołowski, K., Kaczmarska, I., Ehrmann, J.M. and Wojtal, A.Z. (eds.), Current Advances in Algal Taxonomy and its Applications: Phylogenetic, Ecological and Applied Perspective, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 153163.Google Scholar
Korneva, L.G., 1996. Impact of acidification on structural organization of phytoplankton community in the forest lakes of the north-western Russia. Water Sci. Technol., 33, 291296.CrossRefGoogle Scholar
Korneva, L.G., 2000. Ecological aspects of the mass development of  Gonyostomum semen (Ehr.) Dies. (Raphidophyta). Algologia, 10, 265277.Google Scholar
Laugaste, R. and Nõges, P., 2005. Nuisance alga Gonyostomum semen: implications for its global expansion. In: Ramachandra, T.V., Ahalya, N. and Murty, C.R. (eds.), Aquatic Ecosystems, Conservation, Restoration and Management, Capital Publishing Company, Bangalore, 7787.Google Scholar
Lean, D., 1998. Attenuation of solar radiation in humic waters. In: Hessen, D.O. and Tranvik, L.J. (eds.), Aquatic Humic Substances, Ecology and Biogeochemistry, Springer-Verlag, Berlin, Heidelberg, 109124.CrossRefGoogle Scholar
Lebret, K., Fernandez, M. F., Hagman, C. H. C., Rengefors, K. and Hansson, L.-A., 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol. Oceanogr., 57, 727734.CrossRefGoogle Scholar
Le Cohu, R., Guitard, J., Comoy, N. and Brabet, J., 1989. Gonyostomum semen (Raphidophycées), nuisance potentielle des grands réservoirs français? L'exemple du lac de Pareloup. Arch. Hydrobiol., 117, 225236.Google Scholar
Lepistö, L. and Saura, M., 1998. Effects of forest fertilization on phytoplankton in a boreal brown-water lake. Boreal Env. Res., 3, 3343.Google Scholar
Lepistö, L., Antikainen, S. and Kivinen, J., 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia, 273, 18.CrossRefGoogle Scholar
Levander, K.M., 1894. Materialien zur Kenntniss der Wasserfauna in der Umgebung von Helsingfors, mit besonderer Beriicksichtigung des Meeresfauna. I. Protozoa. Acta Soc. pro Fauna et Flora Fennica, 12, 3134.Google Scholar
Negro, A.I., De Hoyos, C. and Vega, J.C., 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia, 424, 2537.CrossRefGoogle Scholar
Njine, T., Kemka, N., Zebaze Togouet, S.H., Nola, M., Niyitegeka, D., Ayissi Etoundi, T.P. and Foto Menbohan, S., 2007. Peuplement phytoplanctonique et qualité des eaux en milieu lacustre anthropisé: cas du lac Municipal de Yaoundé (Cameroun). Afr. J. Sci. Technol., 8, 3951.Google Scholar
Pęczuła, W., 2007. Mass development of the algal species Gonyostomum semen (Raphidophyceae) in the mesohumic Lake Płotycze (central-eastern Poland). Ocean. Hydrobiol. Stud., 36 (Suppl. 1), 163172.Google Scholar
Peltomaa, E. and Ojala, A., 2010. Size-related photosynthesis of algae in a strongly stratified humic lake. J. Plankton Res., 32, 341355.CrossRefGoogle Scholar
Pithart, D., Pechar, L. and Mattsson, G., 1997. Summer blooms of raphidophyte Gonyostomum semen and its diurnal vertical migration in a floodplain pool. Algol. Stud., 85, 119133.Google Scholar
Poniewozik, M., Wojciechowska, W. and Solis, M., 2011. Dystrophy or eutrophy: phytoplankton and physical-chemical parameters in the functioning of humic lakes. Ocean. Hydrobiol. Stud., 40, 2227.Google Scholar
Radwan, S., Kornijów, R., Kowalczyk, C., Kowalik, W., Jarzynowa, B., Popiołek, B., Paleolog, A. and Wojciechowska, W., 1997. Structure of biocenosis in lakes situated in the Polesie National Park (Eastern Poland). Verh. Internat. Verein. Limnol., 26, 588592. Monografia przyrodnicza, Wyd. UMCS, Lublin, 129–144 (in Polish).Google Scholar
Rengefors, K., Palsson, C., Hansson, L.A. and Heiberg, L., 2008. Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquat. Microb. Ecol., 51, 8796.CrossRefGoogle Scholar
Rengefors, K., Weyhenmeyer, G.A. and Bloch, I., 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae, 18, 6573.CrossRefGoogle Scholar
Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. and Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24, 417428.CrossRefGoogle Scholar
Rosen, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica, 13, 263290.Google Scholar
Salonen, K. and Rosenberg, M., 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J. Plank. Res., 22, 18411853.CrossRefGoogle Scholar
Sörensen, J., 1954. Gonyostomum semen (Ehrenb.) Diesing – en svensk vattenorganism av teoretiskt och praktiskt intresse. Svensk Faunistisk Revy, 2, 4752 (in Swedish).Google Scholar
Trigal, C., Goedkoop, W. and Johnson, R.K., 2011. Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Fresh. Biol., 56, 19371948.CrossRefGoogle Scholar
Utermöhl, H., 1958. Zur Vervollkomnung der qualitativen Phytoplanktonmetodik. Mitt. Int. Verein. Limnol., 9, 138.Google Scholar
Voyakina, E., 2010. Phytoplankton structure of small lakes of Valaam island (Ladoga Lake). In: Proceedings of the XXIX International Phycological Conference, Kraków – Niedzica, 19–22nd May 2010, 175176.Google Scholar
Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia, 502, 315324.CrossRefGoogle Scholar
Willén, E., Hajdu, S. and Pejler, Y., 1990. Summer phytoplankton in 73 nutrient-poor Swedish lakes. Classification, ordination and choice of long-term monitoring objects. Limnologica, 20, 217227.Google Scholar
Wojciechowska, W. and Krupa, D., 1992. Many years’ and seasonal changes in phytoplankton of Polesie National Park and its protection zone. Ekologia Polska, 40, 317332.Google Scholar
Wojciechowska, W. and Solis, M., 2009. Prokaryotic and eukaryotic alga of Łęczna-Włodawa Lake District, KUL Publishers, Lublin, 86 p. (in Polish).Google Scholar
Wojciechowska, W., Pęczuła, W. and Zykubek, A., 1996. Long term changes in protected lakes (Sobibór Landscape Park, Ekstern Poland). Ekologia Polska, 44, 179191.Google Scholar
Wojciechowska, W., Solis, M., Pasztaleniec, A. and Poniewozik, M., 2002. Summer phytoplankton composition in 26 lakes of Łęczna-Włodawa Lakeland. Annls Universit. Mariae Curie-Skłodowska C, 57, 127138.Google Scholar