Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T14:29:47.173Z Has data issue: false hasContentIssue false

Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies – comparative approach from two central European regions

Published online by Cambridge University Press:  10 October 2014

Richard Hrivnák*
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
Judita Kochjarová
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia Botanical Garden, Comenius University, Blatnica 315, SK-038 15 Blatnica, Slovakia
Helena Oťaheľová
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
Peter Paľove-Balang
Affiliation:
Institute of Biological and Ecological Sciences, University of P. J. Šafárik, Mánesova 23, SK-040 01 Košice, Slovakia
Michal Slezák
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia Department of Biology and Ecology, Faculty of Education, Catholic University, Hrabovská cesta 1, SK-034 01 Ružomberok, Slovakia
Peter Slezák
Affiliation:
Faculty of Medicine, Institute of Simulation and Virtual Medical Education, Comenius University, Špitálska 24, SK-813 72 Bratislava, Slovakia
*
*Corresponding author: [email protected]
Get access

Abstract

Species richness of macrophytes of artificial and natural water bodies covering rivers, streams, canals and habitats with standing water was studied in two Central European biogeographical regions, Pannonian and Carpathian, represented by two model areas (the Borská nížina Lowland and the Turčianska Kotlina Basin). We found that: (i) the total number of macrophytes was higher in artificial water bodies compared to natural aquatic habitats in both regions and differences were statistically significant (P<0.05); and (ii) species richness of macrophytes is relatively low in both regions; slightly higher mean number was found in the Pannonian region (3.53) compared with the Carpathian region (3.06). Effects of environmental characteristics on species richness studied by generalized linear model (GLM) showed that explained variances of GLM were similar in both regions. The main drivers of the diversity pattern were those connected with the hydrology of water bodies, such as substrate characteristics and turbidity, less frequent were chemical characteristics, such as water conductivity and N-contents, whereas landscape characteristics manifested the smallest impact.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, F.C.F. and Ferreira, M.T., 2013. Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: a review. Plant Biosyst., 147, 11071119.CrossRefGoogle Scholar
Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N. and Csaki, F. (eds.), Second International Symposium on Information Theory, Akadémiai Kiadó, Budapest, 267281.Google Scholar
Armitage, P.D., Szoszkiewicz, K., Blackburn, J.H. and Nesbitt, I., 2003. Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 13, 165185.CrossRefGoogle Scholar
Baattrup-Pedersen, A., Szoszkiewicz, K., Nijboer, R., O´Hare, M. and Ferreira, T., 2006. Macrophyte communities in unimpacted European streams: variability in assemblage patterns, abundance and diversity. Hydrobiologia, 566, 179196.CrossRefGoogle Scholar
Baláž, D., Marhold, K., Urban, P., 2001. Červený zoznam rastlín a živočíchov Slovenska. Ochr. Prír., 20 (Suppl.), 1160.Google Scholar
Baláži, P., Tóthová, L., Oťaheľová, H., Hrivnák, R. and Mišíková, K., 2011. Zoznam zistených taxónov na monitorovaných lokalitách vodných útvarov povrchových vôd Slovenska. Časť 3 vodné makrofyty. Acta Environ. Univ. Comenianae, 19, 589.Google Scholar
Biggs, J., Williams, P., Whitfield, M., Nicolet, P. and Weatherby, A., 2005. 15 years of ponds assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquat. Conserv., 15, 693714.CrossRefGoogle Scholar
Bornette, G. and Puijalon, S., 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci., 73, 114.CrossRefGoogle Scholar
Ceschin, S., Bisceglie, S. and Aleffi, M., 2012. Contribution to the knowledge of the bryoflora of running waters of Central Italy. Plant Biosyst., 146, 622627.Google Scholar
Chambers, P.A., Lacoul, P., Murphy, K.J. and Thomaz, S.M., 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 926.CrossRefGoogle Scholar
Chappuis, E., Ballesteros, E. and Gacia, E., 2012. Distribution and richness of aquatic plants across Europe and Mediterranean countries: patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci., 23, 985997.CrossRefGoogle Scholar
Chatterjee, S., Hardi, A.S. and Price, B., 2000. Regression Analysis by Example, Willey, New York, 384 p.Google Scholar
Davies, B., Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Sear, D., Bray, S. and Maund, S., 2008. Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agric. Ecosyst. Environ., 125, 18.CrossRefGoogle Scholar
Dorotovičová, C., 2013. Man-made canals as a hotspot of aquatic macrophyte biodiversity in Slovakia. Limnologica, 43, 277287.CrossRefGoogle Scholar
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, -H., Soto, D., Stiassny, M.L.J. and Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats status and conservation challenges. Biol. Rev., 81, 163182.CrossRefGoogle ScholarPubMed
Futák, J., 1972. Fytogeografický prehľad Slovenska. In: Lukniš, M. (ed.), Slovensko 2, Príroda, Obzor, Bratislava, 431482.Google Scholar
Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model., 135, 147186.CrossRefGoogle Scholar
Hejda, M., Pyšek, P. and Jarošík, V., 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol., 97, 393403.CrossRefGoogle Scholar
Hrivnák, R., Oťaheľová, H. and Valachovič, M., 2007. Vodná a močiarna vegetácia na Slovensku – súčasné výsledky výskumu a pohľad späť. Zpr. Čs. Bot. Společ., 42, Materiály 22, 2938.Google Scholar
Hrivnák, R., Oťaheľová, H., Valachovič, M., Paľove-Balang, P. and Kubinská, A., 2010. Effect of environmental variables on the aquatic macrophyte composition pattern in streams: a case study from Slovakia. Fundam. Appl. Limnol., 177, 115124.CrossRefGoogle Scholar
Hrivnák, R., Oťaheľová, H., Kochjarová, J. and Paľove-Balang, P., 2013. Effect of environmental conditions on species composition of macrophytes in two distinct biogeographical regions of Central Europe. Knowl. Manag. Aquat. Ecosyst., 09, 115.Google Scholar
Janauer, G.A., 2003. Methods. In: Janauer, G.A., Hale, P. and Sweeting, R. (eds.), Macrophyte Inventory of the River Danube: A Pilot Study. Arch. Hydrobiol., 147 (Suppl.), Large Rivers, 14, 916.Google Scholar
Janauer, G.A. and Dokulil, M., 2006. Macrophytes and algae in running waters. In: Ziglio, G., Siligardi, M. and Flaim, G. (eds.), Biological Monitoring of Rivers, John Wiley & Sons, Chichester, 89109.CrossRefGoogle Scholar
Johnson, J.B. and Omland, K.S., 2004. Model selection in ecology and evolution. Trends Ecol. Evol., 19, 101108.CrossRefGoogle ScholarPubMed
Lacoul, P. and Freedman, B., 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev., 14, 89136.CrossRefGoogle Scholar
Lambdon, P.W., Pyšek, P., Basnou, C., Hejda, M., Arianoutsou, M., Essl, F., Jarošík, V., Pergl, J., Winter, M., Anastasiu, P., Andriopoulos, P., Bazos, I., Brundu, G., Celesti-Grapow, L., Chassot, P., Delipetrou, P., Josefsson, M., Kark, S., Klotz, S., Kokkoris, Y., Kühn, I., Marchante, H., Perglová, I., Pino, J., Vila, M., Zikos, A., Roy, D. and Hulme, P.E., 2008. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia, 80, 101149.Google Scholar
Linton, S. and Goulder, R., 2000. Botanical conservation value related to origin and management of ponds. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 10, 7791.3.0.CO;2-Y>CrossRefGoogle Scholar
Marhold, K. and Hindák, F. (eds.), 1998. Checklist of Non-vascular and Vascular Plants of Slovakia, Veda, Bratislava, 688 p.Google Scholar
Mari, E., Santi, E., Piazzini, S., Renzi, M. and Maccherini, S., 2010. Development of biological diversity in farmland ponds. J. Freshwat. Biol., 25, 95105.CrossRefGoogle Scholar
Markwell, K.A. and Fellows, C.S., 2008. Habitat and biodiversity of on-farm water storages: a case study in Southeast Queensland, Australia. Environ. Manag., 41, 234249.CrossRefGoogle ScholarPubMed
McCullagh, P. and Nelder, P., 1989. Generalized Linear Models, Chapman and Hall, London, 532 p.CrossRefGoogle Scholar
O′Hare, J.M., O′Hare, M.T., Gurnell, A.M., Dunbar, M.J., Scarlett, P.M. and Laize, C., 2011. Physical constraints on the distribution of macrophytes linked with flow and sediment dynamics in British rivers. River Res. Appl., 27, 671683.CrossRefGoogle Scholar
Oťaheľová, H., Valachovič, M. and Hrivnák, R., 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica, 37, 290302.CrossRefGoogle Scholar
Polunin, N.V.C. (ed.), 2008. Aquatic Ecosystems. Trend and Global Prospects. Cambridge University Press, Cambridge, 482 p.CrossRefGoogle Scholar
R Development Core Team, 2013. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 3551 p.PubMed
Rodriguez, J.B., Self, J.R. and Soltanpour, P.N., 1994. Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method. Soil Sci. Soc. Am. J., 58, 866870.CrossRefGoogle Scholar
Sipos, V.K., Kohler, A., Köder, M. and Janauer, G.A., 2003. Macropyhte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydrobiol., 147 (Suppl. 1–2), Large Rivers 14(1–2), 143166.Google Scholar
StatSoft, 2001. STATISTICA. System Reference, StatSoft Inc., Tulsa.
Willby, N.J., Pygott, J.R. and Eaton, J.W., 2001. Inter-relationships between standing crop, biodiversity and trait attributes of hydrophytic vegetation in artificial waterways. Freshwat. Biol., 46, 883902.CrossRefGoogle Scholar
Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. and Sear, D., 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv., 115, 329341.CrossRefGoogle Scholar