Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T17:00:23.348Z Has data issue: false hasContentIssue false

Effects of temperature, sestonic algae features, and seston mineral content on cladocerans of a tropical lake

Published online by Cambridge University Press:  28 April 2010

Cláudia Fileto*
Affiliation:
Departamento de Zoologia, Instituto de Biociências, Unesp, Campus Botucatu, Rubião Jr., s/n°, 18618-000 Botucatu, São Paulo, Brazil
Marlene Sofia Arcifa
Affiliation:
Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, São Paulo, Brazil
Raoul Henry
Affiliation:
Departamento de Zoologia, Instituto de Biociências, Unesp, Campus Botucatu, Rubião Jr., s/n°, 18618-000 Botucatu, São Paulo, Brazil
Rosa A.R. Ferreira
Affiliation:
Departamento de Zoologia, Instituto de Biociências, Unesp, Campus Botucatu, Rubião Jr., s/n°, 18618-000 Botucatu, São Paulo, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

The effects of temperature on the life table, and of seston quality on the individual growth and reproduction of cladocerans from a tropical lake were tested in the laboratory. Life-table experiments were carried out at 17°C, 23°C, and 27°C. Growth bioassays tested the influence of natural seston fractions, separated by net filtration, on cladocerans. The treatments were: (1) total seston plus Scenedesmus spinosus (1 mg C.L−1), (2) seston ≤36 μm, and (3) seston >36 μm. Phytoplankton composition, density, and biomass were evaluated during growth experiments, together with sestonic carbon, nitrogen, and phosphorus concentrations. The intrinsic rates of natural increase were higher for Moina micrura and Daphnia ambigua at 27°C compared to 17°C. The age at first reproduction of both species was delayed at 17°C. Growth rates and fecundity of M. micrura were higher in the seston fraction ≤36 μm than in the fraction >36 μm. Higher growth rates and fecundity of Moina minuta were observed in the seston enriched with the green alga in comparison to the seston ≤36 μm and >36 μm. Bosmina longirostris was unable to reproduce at 17°C and to grow in the seston >36 μm in one experiment. High densities and/or biomass of large colonial and filamentous algae present in the larger seston fraction could have contributed to reduce growth and reproduction. Episodes of food-quantity limitation may occur, but there was no evidence of mineral limitation, although seston C∶P and C∶N ratios were always above the limiting values assumed for temperate water bodies. The C∶P and C∶N ratios are highly influenced by carbon that originates primarily from resuspended detritus from the lake.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, K., Kyle, M. and Elser, J.J., 2004. Effects of stoichiometric dietary mixing on Daphnia growth and reproduction. Oecologia , 138, 333340.CrossRefGoogle ScholarPubMed
Acharya, K., Bukaveckas, P.A., Jack, J.D., Kyle, M. and Elser, J., 2006. Consumer growth linked to diet and RNA-P stoichiometry: Response of Bosmina to variation in riverine food resources. Limnol. Oceanogr. , 51, 18591869.CrossRefGoogle Scholar
Andersen, D.H. and Benke, A.C., 1994. Growth and reproduction of the cladoceran Ceriodaphnia dubia from a forested floodplain swamp. Limnol. Oceanogr. , 39, 15171527.CrossRefGoogle Scholar
Benider, A., Tifnout, A. and Pourriot, R., 2002. Growth of Moina macrocopa (Straus 1820) (Crustacea, Cladocera): influence of trophic conditions, population density and temperature. Hydrobiologia , 468, 111.CrossRefGoogle Scholar
Bottrell, H.H., 1975. The relation between temperature and duration of egg development in some epiphytic Cladocera and Copepoda from the River Thames, Reading, with a discussion of temperature functions. Oecologia , 18, 6384.CrossRefGoogle Scholar
Bunioto, T.C. and Arcifa, M.S., 2007. Effects of food limitation and temperature on cladocerans from a tropical Brazilian lake. Aquat. Ecol. , 41, 569578.CrossRefGoogle Scholar
Burns, C.W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particles ingested. Limnol. Oceanogr. , 13, 675678.CrossRefGoogle Scholar
Casanova, S.M.C. and Henry, R., 2004. Longitudinal distribution of Copepoda populations in the transition zone of Paranapanema River and Jurumirim Reservoir (São Paulo, Brazil) and interchange with two lateral lakes. Braz. J. Biol. , 64, 1126.CrossRefGoogle ScholarPubMed
Choueri, R.B., Bonecker, C.C. and Dias, J.D., 2005. Spatial and temporal density variation of microcrustacean assemblages in different systems of the upper Paraná River floodplain (PR/MSBrazil). Acta Sci. Biol. , 27, 243250.Google Scholar
Cole, G.A., 1979. Textbook of Limnology, The C.V. Mosby Company, Saint Louis.Google Scholar
De Nadai, R. and Henry, R., 2009. Temporary fragmentation of a marginal lake and its effects on zooplankton community structure and organization. Braz. J. Biol. , 69, 819835.CrossRefGoogle Scholar
DeMott, W.R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina . Limnol. Oceanogr. , 27, 518527.CrossRefGoogle Scholar
Díaz-Castro, J.G. and Hardy, E.R., 1998. Life history of Moina micrura (Kurz) fed with three algae species, in the laboratory. Amazoniana , XV, 2534.Google Scholar
Fileto, C., Arcifa, M.S., Ferrão-Filho, A.S. and Silva, L.H.S., 2004. Influence of phytoplankton fractions on growth and reproduction of tropical cladocerans. Aquat. Ecol. , 38, 503514.CrossRefGoogle Scholar
Gordo, T., Lubian, L.M. and Canavate, J.P., 1994. Influence of temperature on growth, reproduction and longevity of Moina salina Daday, 1888 (Cladocera, Moinidae). J. Plankton Res. , 11, 15131523.CrossRefGoogle Scholar
Gotelli, N.J., 1995. A primer of Ecology, Sinauer Associates, Inc. Publishers, Sounderland.Google Scholar
Granado, D.C. and Henry, R., 2008. The influence of the hydrologic pulse on the water physical and chemical variables of lateral lakes with different connections levels to Paranapanema River in the mouth zone at Jurumirim reservoir (São Paulo, Brazil). Acta Limnol. Bras. , 20, 265275.Google Scholar
Granado, D.C., Henry, R. and Tucci, A., 2009. Influência da variação do nível hidrométrico na comunidade fitoplanctônica do Rio Paranapanema e de uma lagoa marginal na zona de desembocadura na Represa de Jurumirim (SP). Hoehnea , 36, 113129.CrossRefGoogle Scholar
Gulati, R.D. and DeMott, W.R., 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwat. Biol. , 38, 753768.CrossRefGoogle Scholar
Hart, D.R., Stone, L. and Berman, T., 2000. Seasonal dynamics of the Lake Kinneret food web: The importance of the microbial loop. Limnol. Oceanogr. , 45, 350361.CrossRefGoogle Scholar
Hecky, R.E., Campbell, P. and Hendzel, L.L., 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. , 38, 709724.CrossRefGoogle Scholar
Henry, R., 2005. The connectivity of the Paranapanema River with two lateral lakes in its mouth zone into the Jurumirim Reservoir. Acta Limnol. Bras. , 17, 5769.Google Scholar
Henry, R., 2009. Annual changes in sediment entrapment efficiency in lakes lateral to a river (Paranapanema River, São Paulo, Brazil). Acta Limnol. Bras. , 21, 2534.Google Scholar
Henry, R., Ushinohama, E. and Ferreira, R.M.R., 2006. O fitoplâncton em três lagoas e no Rio Paranapanema na zona de sua desembocadura na Represa de Jurumirim durante um período prolongado de seca. Rev. Brasil. Bot. , 29, 399414.CrossRefGoogle Scholar
Hessen, D.O., 2006. Determinants of seston C∶P-ratio in lakes. Freshwat. Biol. , 51, 15601569.CrossRefGoogle Scholar
Hessen, D.O., 2008. Efficiency, energy and stoichiometry in pelagic food webs; reciprocal roles of food quality and food quantity. Freshwat. Rev. , 1, 4357.CrossRefGoogle Scholar
Hessen, D.O., Andersen, T. and Lyche, A., 1990. Carbon metabolism in a humic lake: Pool sizes and cycling through zooplankton. Limnol. Oceanogr. , 35, 8499.CrossRefGoogle Scholar
Hessen, D.O., Andersen, T., Brettum, P. and Faafeng, B.A., 2003. Phytoplankton contribution to seston mass elemental ratios in lakes: implications for zooplankton nutrition. Limnol. Oceanogr. , 48, 12891296.CrossRefGoogle Scholar
Jayatunga, Y.N.A., 1986. The influence of food and temperature on the life cycle characteristics of tropical cladoceran species from Kalewewa Reservoir, Sri Lanka. Ph.D. Thesis, University of London, London.
Kurmayer, R., 2000. Nutritive vs. interfering effects of Anabaena on Daphnia and Ceriodaphnia . Verh. Internat. Verein. Limnol. , 27, 14.Google Scholar
Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Freshwat. Res. , 21, 483490.CrossRefGoogle Scholar
Lennon, J.T., Smith, V.H. and Williams, K., 2001. Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. J. Plankton Res. , 23, 425434.CrossRefGoogle Scholar
Luciano, S.C. and Henry, R., 1998. Biomass of Eichhornia azurea Kunth. and Brachiaria arrecta Stent. in lower Taquari river, Jurumirim Reservoir, São Paulo, Brazil. Verh. Internat. Verein. Limnol. , 26, 18571861.Google Scholar
Mackareth, F.J.H., Heron, J. and Talling, J.F., 1978. Water Analysis: Some Revised Methods for Limnologists, Scientific Publication n° 36, Freshwater Biological Association, Cumbria and Dorser.Google Scholar
Martins, G.M. and Henry, R., 2004. Composição e abundância do zooplâncton em três lagoas laterais ao rio Paranapanema na zona de sua desembocadura na Represa de Jurumirim (São Paulo). In: Chellapa, N.T., Chellapa, S. and Passavante, J.Z.O. (eds.), Ecologia Aquática Tropical, Natal, 5372.Google Scholar
Martins-Creuzburg, D., Sperfeld, E. and Wacker, A., 2009. Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids. Proc. Soc. B. , 276, 18051814.CrossRefGoogle Scholar
Masclaux, H., Bec, A., Kainz, M.J., Desvilettes, C., Jouve, L. and Bourdier, G., 2009. Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. Limnol. Oceanogr. , 54, 13231332.CrossRefGoogle Scholar
Moschini-Carlos, V., Pompeo, M.L.M. and Henry, R., 1999. Dinâmica da comunidade perifítica na zona de desembocadura do Rio Paranapanema, Represa de Jurumirim, SP. In: Henry, R. (ed.), Ecologia de Reservatórios: estrutura, função e aspectos sociais, Ed. Fapesp/Fundibio, Botucatu, 713734.Google Scholar
Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta , 27, 3136.CrossRefGoogle Scholar
Murugan, N., 1975. Egg production, development and growth in Moina micrura Kurz (1874) (Cladocera: Moinidae). Freshwat. Biol. , 5, 245250.CrossRefGoogle Scholar
Padisák, J. and Reynolds, C.S., 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia , 506, 111.CrossRefGoogle Scholar
Panarelli, E.A., 2004. Flutuações mensais da comunidade zooplanctônica e dinâmica das populações de Cladocera em lagoas marginais, na região de transição Rio Paranapanema-Represa de Jurumirim (SP). Ph.D. Thesis, Botucatu, Unesp, Brazil.
Panarelli, E.A., Casanova, S.M.C., Nogueira, M.G., Mitsuka, P.M. and Henry, R., 2003. A comunidade zooplanctônica ao longo de gradientes longitudinais no Rio Paranapanema/Represa de Jurumirim (São Paulo, Brasil). In: Henry, R. (ed.), Ecótonos nas interfaces dos ecossistemas aquáticos, Rima Editora, São Carlos, 129160.Google Scholar
Ravet, J.L. and Brett, M.T., 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnol. Oceanogr. , 51, 24382452.CrossRefGoogle Scholar
Rietzler, A.C., 1998. Tempo de desenvolvimento, reprodução e longevidade de Diaphanosoma birgei Korinek e Ceriodaphnia silvestrii Daday em condições naturais de alimentação. Anais VIII Sem. Reg. Ecol. , 8, 11591171.Google Scholar
Rocha, O. and Matsumura-Tundisi, T., 1990. Growth rate, longevity and reproductive performance of Daphnia laevis Birge, D. gessneri Herbst and D. ambigua Scourfield in laboratory cultures. Braz. J. Biol. , 50, 915921.Google Scholar
Sarma, S.S.S., Nandini, S. and Gulati, R.D., 2005. Life history of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia , 542, 315333.CrossRefGoogle Scholar
Scheffer, M., 2004. Ecology of Shallow Lakes – Population and Community Biology Series, Kluwer Academic Publishers.CrossRefGoogle Scholar
Seidendorf, B., Meier, N., Petrusek, A., Boersma, M., Streit, B. and Schwenk, K., 2010. Sensivity of Daphnia species to phosphorus-deficient diets. Oecologia , 162, 349357.CrossRefGoogle Scholar
Sipaúba-Tavares, L.H. and Bachion, M.A., 2002. Influence of dietary habits (algae+supplement) on laboratory population growth and development of two species of Cladocera, Moina micrura and Diaphanosoma birgei . Braz. J. Biol. , 62, 1215.CrossRefGoogle Scholar
Stemberger, R.S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. Aquat. Sci. , 38, 721724.CrossRefGoogle Scholar
Sterner, R.W. and Hessen, D.O., 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Evol. Syst. , 25, 129.CrossRefGoogle Scholar
Strickland, J.D.H. and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Bulletin 167.Google Scholar
Talling, J.F. and Lemoalle, J., 1998. Ecological dynamics of tropical inland waters, Cambridge University Press.
Tett, A., Heaney, S.I. and Droop, M.R., 1985. The Redfield ratio and phytoplankton growth rate. J. Mar. Biol. Assoc. UK , 65, 487504.CrossRefGoogle Scholar
Utermöhl, V., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein. Theor. Angew. Limnol. , 9, 138.Google Scholar
Vanni, M.J., 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. , 57, 6168.CrossRefGoogle Scholar
Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of cladocera and copepoda from Tjeukemeer, the Netherlands. Freshwat. Biol. , 10, 317340.CrossRefGoogle Scholar
Vollenweider, R.A., 1974. Primary Production in Aquatic Environments, Blackwell Scientific Publications, Osney Mead, Oxford.Google Scholar