Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:32:51.908Z Has data issue: false hasContentIssue false

Effect of trophic status and sediment particle size on diversity and abundance of aquatic Oligochaeta (Annelida) in neotropical reservoirs

Published online by Cambridge University Press:  17 May 2013

Yara Moretto*
Affiliation:
Graduate Studies Program in Ecology of Inland Aquatic Ecosystems, Maringá State University, Av. Colombo, 5790, PEA, Bloco G90, CEP 87.020-900, Maringá, Paraná, Brazil Laboratory of Ecology, Fishing and Ichthyology, Graduate Studies Program of Aquaculture and Sustainable Development. Federal University of Paraná, Palotina Campus, Rua Pioneiro, 2153, Jd. Dallas, CEP 85950-000, Palotina, Paraná, Brazil
Nadson Ressyé Simões
Affiliation:
Graduate Studies Program in Ecology of Inland Aquatic Ecosystems, Maringá State University, Av. Colombo, 5790, PEA, Bloco G90, CEP 87.020-900, Maringá, Paraná, Brazil
Evanilde Benedito
Affiliation:
Graduate Studies Program in Ecology of Inland Aquatic Ecosystems, Maringá State University, Av. Colombo, 5790, PEA, Bloco G90, CEP 87.020-900, Maringá, Paraná, Brazil
Janet Higuti
Affiliation:
Graduate Studies Program in Ecology of Inland Aquatic Ecosystems, Maringá State University, Av. Colombo, 5790, PEA, Bloco G90, CEP 87.020-900, Maringá, Paraná, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

The influence of the sediment grain size and the trophic status of the reservoirs on the composition, richness and biomass of Oligochaeta community was tested. Samples were taken from the littoral and profundal zones of 30 neotropical reservoirs from six different watersheds during two hydrological periods (dry and rainy seasons). The sample units were ordinated, with principal component analyses, according to differences in the sediment grain size, sample depth and dissolved oxygen. The results of a multiple response permutation procedure (MRPP) analysis revealed significant differences in species composition between littoral and profundal zones, trophic status (oligotrophic, mesotrophic and eutrophic) and different watersheds. The environment–species relationship was tested using redundancy analyses. In order to test which environmental variables, either granulometric or limnological, influenced the Oligochaeta community variability we used a partitioning procedure of inertia. Local variations, including reservoir zone and trophic status, were primarily influenced by differences in sediment type and depth. Significant differences in the total biomass between zones, trophic status, watershed and hydrological period were also demonstrated by a Kruskal–Wallis or Mann–Whitney test. The most prevalent taxa were the cosmopolitan tubificids Bothrioneurum sp. and Branchiura sowerbyi, and the naidids Dero (Dero) digitata and Pristina breviseta, which are dependent on periphyton for food. Higher biomass values were recorded in mesotrophic reservoirs, due to increased nutrient availability and adequate dissolved oxygen supply. Our results indicate that the Oligochaete community structure is directly influenced by local environmental variation in neotropical reservoirs; and that the sediment grain size is the most important factor in determining the Oligochaete community structure.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiyer, K.S.P., 1926. Notes on the aquatic Oligochaeta of Travancore, II. Ann. Magas. Nat. Hist. 18, 131142.CrossRefGoogle Scholar
Alves, R.G. and Lucca, J.V., 2000. Oligochaeta (Annelida: Clitellata) como indicador de poluição orgânica em dois córregos pertencentes à Bacia do Ribeirão do Ouro – Araraquara (São Paulo, Brasil). Braz. J. Ecol., 2, 112117.Google Scholar
Alves, R.G., Marchese, M.R. and Escarpinati, S.C., 2006. Oligochaeta (Annelida, Clitellata) in lotic environments in the state of São Paulo, Brazil. Iheringia Zool., 96, 431435.CrossRefGoogle Scholar
Alves, R.G., Marchese, M.R. and Martins, R.T., 2008. Oligochaeta (Annelida, Clitellata) of lotic environments at Parque Estadual Intervales (São Paulo, Brazil). Biota Neotrop., 8, 6972. Available online at: http://www.biotaneotropica.org.br/v8n1/en/abstract?article+bn01708012008.CrossRefGoogle Scholar
Bagatini, Y.M., Higuti, J. and Benedito, E., 2007. Temporal and longitudinal variation of Corbicula fluminea (Mollusca, Bivalvia) biomass in the RosanaReservoir, Brazil. Acta Limnol. Bras., 19, 117130.Google Scholar
Beddard, F.E., 1892. A new branchiate Oligochate (Branchiura sowerbyi). Quat. J. Microsc. Sci. 33, 325341.Google Scholar
Benke, A.C., Huryn, A.D., Smock, L.A. and Wallace, J.B., 1999. Length mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc., 18, 308343.CrossRefGoogle Scholar
Bini, L.M., Velho, L.F.M. and Lansac-Tôha, F.A., 2003. The effect of connectivity on the relationship between local and regional species richness of testate amoebae (Protozoa, Rhizopoda) in floodplain lagoons of the Upper Paraná River, Brazil. Acta Oecol., 24, 145151.CrossRefGoogle Scholar
Bletter, M., Amsler, M., Ezcurra De Drago, I. and Marchese, M., 2008. Effects of stream hydraulics and other environmental variables on density of Narapa bonettoi (Oligochaeta) in the Paraná River system. River Res. Appl., 24, 11241140.CrossRefGoogle Scholar
Bonomi, G. and Pasteris, A., 2006. From demographic strategies to mathematical models: trends in population dynamics studies of aquatic Oligochaeta. Hydrobiología, 564, 6171.CrossRefGoogle Scholar
Borcard, D., Legendre, P. and Drapeu, P., 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.CrossRefGoogle Scholar
Bourne, A.G., 1891. Notes on the naidiform Oligochaeta. Quat. J. Microsc. Sci., 32, 335356.Google Scholar
Brinkhurst, R.O., 1964. Studies on the North American aquatic Oligochaeta. I. Naididae and Opistocystidae. Proceed. Acad. Nat. Sci. Philadelp., 116, 195230.Google Scholar
Brinkhurst, R.O. and Marchese, M.R., 1992. Guia para la identificacion de oligoquetos aquáticos continentales de Sud y Centro America, Associacion de Ciencias Naturales del Litoral, Santo Tomé, 207 p.Google Scholar
Carlson, R.E., 1977. A Trophic State Index for Lakes. Limnol. Ocean., 22, 361369.CrossRefGoogle Scholar
Cernosvitov, L., 1937. Notes sur les Oligochaeta (Naididées et Enchytraeidées) de l' Argentine. Anales del Mus. Argent. Cienc. Nat. “Bernardino Rivadavia”, 39, 136157.Google Scholar
Chapman, P.M., 2001. Utility and relevance of aquatic oligochaetes in ecological risk assessment. Hydrobiologia, 463, 149169.CrossRefGoogle Scholar
Chauvet, E., Giani, N. and Gessner, M.O., 1993. Breakdown and invertebrate colonization of leaf litter in two contrasting streams: significance of Oligochaetes in a large river. Can. J. Fish. Aquat. Sci., 50, 488495.CrossRefGoogle Scholar
Claparède, E., 1862. Le developpement d'Hydroïdes marins appartenant au genre Tubulaire. Verh. Schweiz. Naturf. Ges., 194195.Google Scholar
Cordero, E.H., 1948. Zur Kenntnis der Gattung Opisthocysta (Archioligochaeta). Commun. Zool. Mus. Hist. Nat. Montevideo, 50, 18.Google Scholar
Dornfeld, C.B., Alves, R.G., Leite, M.A. and Espíndola, E.L.G., 2006. Oligochaeta in eutrophic reservoir: the case of Salto Grande reservoir and their main affluent (America, São Paulo, Brazil). Acta Limnol. Bras., 18, 189197.Google Scholar
Dufrêne, M. and Legrendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345366.Google Scholar
Erséus, C., Rota, E., Timm, T., Grimm, R., Healy, B. and Lundberg, S., 2005. Riverine and riparian clitellates of three drainages in southern Sweden. Ann. Limnol. - Int. J. Lim., 41, 183194.CrossRefGoogle Scholar
Friberg, N., 2010. Pressure-response relationships in stream ecology: introduction and synthesis. Freshw. Biol., 55, 13671381.CrossRefGoogle Scholar
Golterman, H.L., Clymo, R.S. and Ohmstad, M.A.M., 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell Scientific Publication, London, 213 p.Google Scholar
Harman, W.J., 1977. Three new species of Oligochaeta (Naididae) from the southeastem U.S. Proceed. Biol. Soc. Washing., 90, 483490.Google Scholar
Harper, D., 1992. Eutrophication of Freshwaters: Principles, Problems, and Restoration. Chapman & Hall, New York, 327 p.CrossRefGoogle Scholar
Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 22042214.CrossRefGoogle Scholar
Johnson, R.K. and Goedkoop, W., 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshw. Biol., 47, 18401854.CrossRefGoogle Scholar
Johnson, R.K., Furse, M.T., Hering, D. and Sandin, L., 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshw. Biol., 52, 939958.CrossRefGoogle Scholar
Julio, H.F., Thomaz, S.M., Agostinho, A.A. and Latini, J.D., 2005. Distribuição e caracterização dos reservatórios. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (eds.), Biocenose em reservatórios: padrões espaciais e temporais, Rima, São Carlos, 117.Google Scholar
Kowalevski, M., 1914. Rodzaj Aulodrilus Bretscher 1899 i jego przedstawicicle. Bull. Int. Acad. Sci. Lett. Cracovie, 54, 598604.Google Scholar
Lafont, M., 1984. Oligochaete communities as biological descriptors of pollution in the fine sediments of rivers. In: Bonomi G. and Erséus C. (eds.), Aquatic Oligochaeta. Hydrobiologia, 115, 127129.CrossRefGoogle Scholar
Lafont, M., 1987. Production of Tubificidae in the littoral zone of Lake Léman near Thonon-les-Bains: a methodological approach. In: Brinkhurst R.O. and Diaz R.J. (eds.), Aquatic Oligochaeta. Hydrobiologia, 155, 179187.CrossRefGoogle Scholar
Legendre, P., Oksanen, J. and Ter Braak, C.J.F., 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol., 2, 269277.CrossRefGoogle Scholar
Lind, O.T., Terrell, T.T., Kimmel, B.L., 1993. Problems in reservoir trophic-state classification and implications for reservoir management. In: Straškraba, M., Tundisi, J.G. (eds.), Comparative Reservoir Limnology and Water Quality Management, Kluwer Academic Publishers, Dordrecht, 5767.CrossRefGoogle Scholar
Marchese, M. and Ezcurra de Grago, I., 2006. Bentos como indicador de condiciones tróficas del sistema del Río Paraná Medio. In: Tundisi, J.G., Matsumura-Tundisi, T. and Galli, C.S. (eds.), Eutrofização na América do Sul, Instituto Internacional de Ecologia, São Carlos, 297316.Google Scholar
Margalef, R., 1994. The place of epicontinetal waters in global ecology. In: Margalef, R. (ed.). Limnology now: a paradigm of planetary problems. Amsterdam, Elsevier Science, 18.Google Scholar
Martin, P., 1996. Oligochaeta e Aphanoneura in ancient lakes: a review. Hydrobiologia, 334, 6372.CrossRefGoogle Scholar
Martin, P., Martens, K. and Goddeeris, B., 1999. Oligochaeta from the abyssal zone ofLake Baikal (Siberia, Russia). In: Healy B.M., Reynoldson T.B. and Coates K.A. (eds.), Aquatic Oligochaetes. Hydrobiologia, 406, 165174.CrossRefGoogle Scholar
Martinez-Anselmi, E. and Prat, N., 1984. Oligochaeta from profundal zones of Spanish reservoirs. Hydrobiologia, 115, 223230.CrossRefGoogle Scholar
Martins, R.T., Silveira, L.S., Alves, R.G., 2011. Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a neotropical lentic system. Ann. Limnol. - Int. J. Lim., 47, 339346.CrossRefGoogle Scholar
Matsumura-Tundisi, T., Luzia, A.P., Tundisi, J.G., 2006. Estado trófico dos reservatórios em cascata do médio e baixo Tietê (SP) e manejo para o controle da eutrofização. In: Tundisi, J.G., Matsumura-Tundisi, T. and Galli, C.S. (eds.), Eutrofização na América do Sul, Instituto Internacional de Ecologia, São Carlos, 141160.Google Scholar
McCune, B. and Mefford, M.J., 1999. PC-ORD. Multivariate Analysis of Ecological Data, Version 3.15, Gleneden Beach, MJM Software, Oregon.Google Scholar
Menetrey, N., Oertli, B., Sartori, M., Wagner, A. and Lachavanne, J.B., 2005. Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia, 597, 125135.CrossRefGoogle Scholar
Michaelsen, W. 1900. Oligochaeta. Das Tierreich, 10. R. Friedländer und Sohn. Berlin, XXIX+575 p.
Moretto, Y., Higuti, J. and Takeda, A.M., 2003. Spatial variation of the benthic community in the Corumbá reservoir,Goiás, Brazil. Acta Sci., 25, 2330.Google Scholar
Müller, O.F. 1773–74. Vermium terrestrium et fluviatilium, II. Hafniae et Lipsiae (not seen, quoted from Sperber, 1948).
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2011. VEGAN: Community Ecology Package. Available online at: http://cran.r-project.org/.
Pagioro, T.A., Velho, L.F.M., Lansac-Tôha, F.A., Pereira, D.G. and Nakamura, A.K.S., 2005. Influência do grau de trofia sobre os padrões de abundância de bactérias e protozoários planctônicos em reservatórios do Estado do Paraná. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (eds.), Biocenoses em reservatórios: padrões espaciais e temporais, Rima, São Carlo, 4756.Google Scholar
Peralta, L., Escobar, E., Alcocer, J. and Lugo, A., 2002. Oligochaetes from six tropical crater lakes in Central México: species composition, density and biomass. Hydrobiologia, 467, 109116.CrossRefGoogle Scholar
Peres-Neto, P.R., Legendre, P., Dray, S. and Bocard, D., 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 26142625.CrossRefGoogle ScholarPubMed
Raposeiro, P.M., Ramos, J.C. and Costa, A.C., 2009. First record of Branchiura sowerbyi Beddard, 1892 (Oligochaeta: Tubificidae) in Azores. Aquat. Invas., 4, 487490.CrossRefGoogle Scholar
R Core Team, (2011). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Available online at http://www.R-project.org/.PubMed
Real, M. and Prat, N., 1992. Factors influencing the distribution of chironomids and oligochaetes in profundal areas of Spanish reservoirs. Neth. J. Aquat. Ecol., 26, 405410.CrossRefGoogle Scholar
Righi, G. and Varela, M.E., 1983. Narapa bonettoi, gen. nov., sp. nov. (Oligochaeta, Narapidae, Fam. nov.) de agua doce da Argentina. Rev. Asoc. Cienc. Nat. Litoral 14, 715.Google Scholar
Rîsnoveanu, G. and Vãdineanu, A., 2003. Long term functional changes within the Oligochaeta communities within the Danube River Delta, Romania. Hydrobiologia, 506–509, 399405.CrossRefGoogle Scholar
Rocha, O., Tavares, K.S., Branco, M.B., Pamplin, P.A.Z., Espíndola, E.L.G. and Marchese, M., 2006. Padrões de biodiversidade em reservatórios e relações com o processo de eutrofização. In: Tundisi, J.G., Matsumura-Tundisi, T. and Galli, C.S. (eds.), Eutrofização na América do Sul, Instituto Internacional de Ecologia, São Carlos, 353372.Google Scholar
Rodrigues, L., Fonseca, I.A., Leandrini, J.A., Felisberto, S.A. and Silva, E.L.V., 2005a. Distribuição espacial da biomassa perifítica em reservatórios e relação com o tipo de substrato. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (eds.), Biocenoses em reservatórios: padrões espaciais e temporais, Rima, São Carlos, 8796.Google Scholar
Rodrigues, L.C., Train, S., Pivato, B.M., Bovo, V.M., Borges, P.A.F. and Jati, S., 2005b. Assembléias fitoplanctônicas de trinta reservatórios do Estado do Paraná. In: Rodrigues, L., Thomaz, S.M., Agostinho, A.A. and Gomes, L.C. (eds.), Biocenoses em reservatórios: padrões espaciais e temporais, Rima, São Carlos, 5772.Google Scholar
Rossaro, B., Boggero, A., Lencioni, A., Marziali, L. and Solimini, A., 2006. Tools for the development of a bentic quality index for Italian lakes. J. Limnol., 65, 4151.CrossRefGoogle Scholar
Saether, O.A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2, 6574.Google Scholar
Särkkä, J., 1992. On the ecology of littoral Oligochaeta of an oligotrophic Finnish lake. Holarctic Ecol., 5, 396404.Google Scholar
Schenková, J., Komarék, O. and Zahrádková, S., 2001. Oligochaeta of the Morava and Odra River basin (Czech Republic): species distribution and community composition. Hydrobiologia, 463, 235240.CrossRefGoogle Scholar
Schenková, J., Helesic, J. and Jarkovský, J., 2006. Seasonal dynamics of Bythonomus lemani and Bothrioneurum vejdovskyanun (Oligochaeta, Annelida) in relation to environmental variables. Biol. Bratislava, 61, 517523.CrossRefGoogle Scholar
Slepukhina, T.D., 1984. Comparison of different methods of water quality evaluation by means of oligochaetes. In: Bonomi G. and Erséus C. (eds.), Aquatic Oligochaeta. Hydrobiologia, 115, 183186.CrossRefGoogle Scholar
Sporka, F., 1996. Macrozoobenthos – permanent fauna. In: Krno I. (ed.), Limnology of the Turiec River Basin (West Carpathians, Slovakia). Biol. Bratislava, 51, 2327.Google Scholar
Stat Soft Inc., 2005. Statistica (data analysis software system) version 7.1. Available online at http://www.statisoft.inc.
Stendera, S.E.S. and Johnson, R.K., 2005. Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshw. Biol., 50, 13601375.CrossRefGoogle Scholar
Suguio, K., 1973. Introdução à sedimentologia, Edgard Blücher, São Paulo, 317 p.Google Scholar
Takahashi, M.A., Higuti, J., Bagatini, Y.M., Zviejkovski, I.P. and Velho, L.F.M., 2008. Composition and biomass of larval chironomid (Insecta, Diptera) as potential indicator of trophic conditions in southern Brazil reservoirs. Acta Limnol. Bras., 20, 513.Google Scholar
Toledo, A., Talarico, M., Chinez, S.J. and Agudo, E.G., 1983. A aplicação de modelos simplificados para a avaliação do processo de eutrofização em lagos e reservatórios tropicais. In: Anais do 12° Congresso Brasileiro de Engenharia Sanitária e Ambiental, Santa Catarina, 134.Google Scholar
Van Duinen, G.A., Timm, T., Smolders, A.J.P., Brock, A.M.T., Verberk, W.C.E.P. and Esselink, H., 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia, 564, 143155.CrossRefGoogle Scholar
Verdonschot, P.F.M., 1989. The role of oligochaetes in the management of waters. In: Kaster J. L. (ed.), Aquatic Oligochaete Biology. Hydrobiologia, 180, 213227.CrossRefGoogle Scholar
Verneaux, V. and Aleya, L., 1998. Bathymetric distributions of chironomid communities in ten French lakes: implications on lake classification. Arch. Hydrobiol., 142, 209228.CrossRefGoogle Scholar
Weijters, M.J., Janse, J.H., Alkemade, R. and Verhoeven, J.T.A., 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat. Conserv. Mar. Freshw. Ecos., 19, 104112.CrossRefGoogle Scholar
Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. J. Geol., 30, 377392.CrossRefGoogle Scholar
Zimmerman, G.M., Goetz, H. and Mielke, P.W., 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66, 606611.CrossRefGoogle Scholar