Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T14:38:01.496Z Has data issue: false hasContentIssue false

Effect of surrounding trees and dry rush presence on spring zooplankton community in an urban pond complex

Published online by Cambridge University Press:  13 November 2014

Anna M. Basińska*
Affiliation:
Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland Department of Meteorology, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland Laboratory of Wetland Ecology and Monitoring, Adam Mickiewicz University in Poznań, Dzięgielowa 27, 61-680 Poznań, Poland
Kasper Świdnicki
Affiliation:
Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
Natalia Kuczyńska-Kippen
Affiliation:
Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
*
*Corresponding author: [email protected]
Get access

Abstract

The role of both natural and artificial ponds in supporting biodiversity and as an infrequent habitat for aquatic organisms in urban areas may be greater than that in more rural landscapes. Moreover, biological succession and the dynamics of zooplankton can differ in urban ponds where we may observe a specific combination of environmental factors (e.g., an increase of eutrophication and pollution) compared to other water ecosystems. Therefore, ten urban artificial ponds were examined and the type of direct catchment area was established as the most important factor in the determination of zooplankton distribution. Different environmental factors structured zooplankton distribution between forest and meadow ponds. Low concentrations of oxygen as well as lack of fish, which was an effect of high concentrations of ammonium nitrogen, were responsible for the occurrence of littoral species and large crustacean species (e.g., Daphnia hyalina and Megacyclops viridis) in the case of forest ponds. Fish predation on large crustaceans and favourable food conditions (high concentration of chlorophyll a) created suitable conditions for the occurrence of pelagic species (e.g., Keratella cochlearis and K. quadrata) in the case of meadow ponds. Moreover, soon after the ice cover melted and before new macrophytes developed, previous-year dry rush stems created valuable refuge conditions for zooplankton in this type of pond. Despite anthropogenic pollution resulting from the close vicinity of the agglomeration of Poznań and unfavourable conditions attributed to the spring season a diverse zooplankton community occurred, reaching the level of 119 species in total.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., 2004. Influence of land use and landscape setting on the ecological status of rivers. Limnetica, 23, 187198.Google Scholar
American Public Health Association, American Water Works Association, and Water Environment Federation, 1998. Standard Methods for the Examination of Water and Wastewater (20th edn,), American Public Health Association, Washington, DC, 1183 p.PubMed
Balayla, D.J. and Moss, B., 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquat. Ecol., 37, 417435.CrossRefGoogle Scholar
Boix, D., Biggs, J., Céréghino, R., Hull, A.P., Kalettka, T. and Oertli, B., 2012. Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia, 689, 19.CrossRefGoogle Scholar
Brylińska, M., 1991. Freshwater fishes of Poland (Ryby słodkowodne Polski), Polish Scientific Publishers PWN, Warsaw, 521 p.Google Scholar
Céréghino, R., Biggs, J., Oertli, B. and Declerck, S., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia, 597, 16.CrossRefGoogle Scholar
Dalu, T., Clegg, B. and Nhiwatiwa, T., 2012. Macroinvertebrate communities associated with littoral zone habitats and the influence of environmental factors in Malilangwe Reservoir, Zimbabwe . Knowl. Manag. Aquat. Ecosyst., 406, 515.Google Scholar
Declerck, S., De Bie, T., Ercken, D., Hampel, H., Schrijvers, S., Van Wichelen, J., Gillard, V., Mandiki, R., Lossonf, B., Bauwens, D., Keijers, S., Vyverman, W., Goddeeris, B., De Meester, L., Brendonck, L. and Martens, K., 2006. Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol. Conserv., 131, 523532.CrossRefGoogle Scholar
De Paggi, S.B. and Devercelli, M., 2011. Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water Air Soil Poll., 218, 93108.CrossRefGoogle Scholar
Di Prinzio, C.Y., Casaux, R.J. and Miserendino, M.L., 2009. Effects of land use on fish assemblages in Patagonian low order streams. Ann. Limnol. - Int. J. Lim., 45, 267277.CrossRefGoogle Scholar
Dodson, S.I., Everhart, W.R., Jandl, A.K. and Krauskopf, S.J., 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia, 579, 393399.CrossRefGoogle Scholar
Ejsmont-Karabin, J. and Hutorowicz, A., 2011. Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. St., 40, 7176.CrossRefGoogle Scholar
Ejsmont-Karabin, J. and Kruk, M., 1998. Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia, 387–388, 241249.CrossRefGoogle Scholar
Elliott, J.I., 1977. Seasonal changes in the abundance and distribution of planktonic rotifers in Grasmere (English Lake District). Freshw. Biol., 7, 147166.CrossRefGoogle Scholar
Flößner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas, Backhuys Publishers, Leiden, 428 p.Google Scholar
Grochowska, J.K. and Brzozowska, R., 2013. The influence of different recultivation methods on the water buffer capacity in a degraded urban lake. Knowl. Managt. Aquatic Ecosyst., 410, 01.CrossRefGoogle Scholar
Hanazato, T. and Yasuno, M., 1989. Influence of overwintering Daphnia on spring zooplankton communities: an experimental study. Ecol. Res., 4, 323338.CrossRefGoogle Scholar
Hansson, L.A., Nicolle, A., Brodersen, J., Romare, P., Skov, C. and Brönmark, C., 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnol. Oceanogr., 207, 696706.CrossRefGoogle Scholar
Iglesias, C., Goyenola, G., Mazzeo, N., Meerhoff, M., Rodó, E. and Jeppesen, E., 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia, 584, 179189.CrossRefGoogle Scholar
Lampert, W., Lampert, K.P. and Larsson, P., 2010. Coexisting overwintering strategies in Daphnia pulex: a test of genetic differences and growth responses. Limnol. Oceanogr., 55, 18931900.CrossRefGoogle Scholar
Lepš, J. and Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 284 p.CrossRefGoogle Scholar
Lucena-Moya, P. and Duggan, I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol., 45, 279287.CrossRefGoogle Scholar
McGavigan, C., 2012. A quantitative method for sampling littoral zooplankton in lakes: the active tube. Limnol. Oceanogr.–Meth., 10, 289295.CrossRefGoogle Scholar
Nicolle, A., Hansson, L.-A. and Brönmark, C., 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia, 652, 119125.CrossRefGoogle Scholar
Norris, V., 1993. The use of buffer zones to protect water quality: a review. Water Resour. Manag., 7, 257272.CrossRefGoogle Scholar
Park, S.-R., Lee, H.-J., Lee, S.-W., Hwang, S.-J., Byeon, M.-S., Joo, G.-J., Jeong, K.-S., Kong, D.-S. and Kim, M.-C., 2011. Relationships between land use and multi-dimensional characteristic of streams and rivers at two different scales. Ann. Limnol. - Int. J. Lim., 47, S107S116.CrossRefGoogle Scholar
Pawuła-Piwowarczyk, R., 1992. Spatial Management in the Cities and Communes of Wielkopolska Region. (Gospodarka przestrzenna miast i gmin w regionie Wielkopolski), Zakład Poligraficzny Politechniki Poznańskiej, Poznań, 353 p.Google Scholar
Pourriot, R., 1970. Quelques Trichocerca (Rotifères) et leurs régimes alimentaires. Ann. Hydrobiol., 1, 155171.Google Scholar
Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beiheft, 8, 243260.Google Scholar
Radwan, S., Bielańska-Grajner, I. and Ejsmont-Karabin, J., 2004. Rotifers Rotifera. Freshwater fauna of Poland (Wrotki Rotifera. Fauna słodkowodna Polski), Oficyna Wydawnicza Tercja, Łódź, 447 p.Google Scholar
Ruttner-Kolisko, A., 1980. The abundance and distribution of Filinia terminalis in various types of lakes as related to temperature, oxygen, and food. Hydrobiologia, 73, 169175.CrossRefGoogle Scholar
Rybak, J.I. and Błędzki, L.A., 2010. Freshwater Planktonic Crustaceans: Identification key. (Słodkowodne skorupiaki planktonowe), Wydawnictwo Uniwersytetu Warszawskiego, Warszawa, 366 p.Google Scholar
Sobczyński, T. and Joniak, T., 2009. Vertical changeability of physical-chemical features of bottom sediments in three lakes in aspect type of water mixis and intensity of human impact. Pol. J. Environ. Stud., 18, 10931099.Google Scholar
Špoljar, M., Dražina, T., Šmargač, J., Borojevič, K.K. and Žutnić, P., 2012. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 161175.CrossRefGoogle Scholar
Stansfield, J.H., Perrow, M.R., Tench, L.D., Jowitt, A.J.D. and Taylor, A.A.L., 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342–343, 229240.CrossRefGoogle Scholar
Starmach, K., 1989. Plankton roślinny wód słodkich. Metody, badania i klucze do oznaczania gatunków występujących w wodach Europy Środkowej (Freshwater Phytoplankton: Methods and the Identification Key of Central European Species), Vol. I, Polska Akademia Nauk, Polskie Wydawnictwo Naukowe, 496 p.Google Scholar
Sterner, R.W., 1989. The role of grazers in phytoplankton succession. In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer, New York, 107170.CrossRefGoogle Scholar
Symons, C.C., Arnott, S.E. and Sweetman, J.N., 2012. Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia, 694, 131141.CrossRefGoogle Scholar
Tessier, C., Cattaneo, A., Pinel-Alloul, B., Galanti, G. and Morabito, G., 2004. Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). J. Limnol., 63, 190198.CrossRefGoogle Scholar
Tinson, S. and Laybourn-Parry, J., 1985. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia, 127, 257263.CrossRefGoogle Scholar
Tõnno, I., Künnap, H. and Nõges, T., 2003. The role of zooplankton grazing in the formation of ‘clear water phase’ in a shallow charophyte-dominated lake. Hydrobiologia, 506–509, 353358.CrossRefGoogle Scholar
Warfe, D.M. and Barmuta, L.A., 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia, 141, 171178.CrossRefGoogle ScholarPubMed