Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:44:40.541Z Has data issue: false hasContentIssue false

Constructed marginal shallow water zones along a navigable canal: possibilities and constraints for helophyte and aquatic vegetation

Published online by Cambridge University Press:  29 April 2013

Andy Van Kerckvoorde*
Affiliation:
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium
Pieter Verschelde
Affiliation:
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium
Floris Vanderhaeghe
Affiliation:
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium
Maud Raman
Affiliation:
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium
Sophie Vermeersch
Affiliation:
Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels, Belgium
*
*Corresponding author: [email protected]
Get access

Abstract

Banks of navigable canals are often stabilized with “hard” materials resulting in unsuitable conditions for marginal riparian vegetation. A constructed marginal shallow and sheltered water zone can favour riparian vegetation. In 1998, a new canal branch with shallow water zones was constructed along the canal Ghent-Bruges (Belgium). This study analysed plant vegetation development of these shallow zones, its spatial variation and its mid-way succession. For this purpose, riparian vegetation was investigated by plots in the middle of the shallow water zones, on the canal bank side and on the defence dam side in 2006 and 2009. The studied shallow water zones permitted the development of helophyte vegetation on the sides but hardly in the middle. Differences in number of taxa, diversity-index and Grime's competitiveness and ruderality were observed on the sides. The application of different construction materials is discussed as a possible cause. An increase of competitiveness and a decrease of ruderality indicated vegetation succession during the period 2006–2009. Rooted aquatic plant vegetation was poorly developed in the studied shallow water zones probably due to the deposition and accumulation of fine sediments. The results were interpreted in relation to possible design principles of shallow water zones and might be useful for waterway managers, policy-makers and technicians in future bank engineering projects along navigable canals. Moreover, the study contributes to the knowledge of mitigating negative ecological effects associated with navigation. Such bank rehabilitation measures may be necessary to achieve the ecological goals of the European Water Framework Directive.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acreman, M. and Ferguson, A., 2010. Environmental flows and the European Water Framework Directive. Freshwater Biol., 55, 3248.CrossRefGoogle Scholar
Armitage, P.D., Lattmann, K., Kneebone, N. and Harris, I., 2001. Bank profile and structure as determinants of macroinvertebrate assemblages-seasonal changes and management. Regul. River., 17, 543556.CrossRefGoogle Scholar
Asplund, T.R. and Cook, C.M., 1997. Effects of motor boats on submerged aquatic macrophytes. Lake Reserv. Manage., 13, 112.CrossRefGoogle Scholar
Boedeltje, G., Smolders, A.J.P., Roelofs, J.G.M. and Van Groenendael, J.M., 2001. Constructed shallow zones along navigation canals: vegetation establishment and change in relation to environmental characteristics. Aquat. Conserv., 11, 453471.CrossRefGoogle Scholar
Boedeltje, G., Smolders, A.J.R., Lamers, L.P.M. and Roelofs, J.G.M., 2005. Interactions between sediment propagule banks and sediment nutrient fluxes explain floating plant dominance in stagnant shallow waters. Arch. Hydrobiol., 162, 349362.CrossRefGoogle Scholar
Boeters, R., Havinga, H., Litjens, G. and Verheij, H.J., 1997. Ten years of experience in combining ecology and navigation on Dutch waterways. Paper presented at the 29th International Navigation Congress, Permanent International Association of Navigation Congresses.
Bornette, G., Amoros, C. and Lamouroux, N., 1998. Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biol., 39, 267283.CrossRefGoogle Scholar
Braun-Blanquet, J., 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde, Springer, Wenen/New York.CrossRefGoogle Scholar
Caffrey, J. and Beglin, T., 1996. Bankside stabilisation through reed transplantation in newly constructed Irish canal habitat. Hydrobiology, 340, 349354.CrossRefGoogle Scholar
Carpenter, S.R. and Lodge, D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341370.CrossRefGoogle Scholar
Coops, H., Boeters, R. and Smit, H., 1991. Direct and indirect effects of wave attack on helophytes. Aquat. Bot., 41, 333352.CrossRefGoogle Scholar
Coops, H., Geilen, N., Verheij, H.J., Boeters, R. and vanderVelde, G., 1996. Interactions between waves, bank erosion and emergent vegetation: an experimental study in a wave tank. Aquat. Bot., 53, 187198.CrossRefGoogle Scholar
Cox, D.R. and Hinkley, D.V., 1974. Theoretical Statistics, Chapman and Hall, London.CrossRefGoogle Scholar
CUR, 1999a. Natuurvriendelijke oevers: aanpak en toepassingen, Civieltechnisch Centrum Uitvoering Research en Regelgeving, publicatie 200, Gouda.
CUR, 1999b. Natuurvriendelijke oevers: belasting en sterkte, Civieltechnisch Centrum Uitvoering Research en Regelgeving, publicatie 201, Gouda.
CUR, 2003. Natuurvriendelijke oevers: oeversbeschermingsmaterialen, Civieltechnisch Centrum Uitvoering Research en Regelgeving, publicatie 202, Gouda.
De Roo, S., Vanhaute, L. and Troch, P., 2012. How ship wave action influences the sediment budget of a nature friendly bank protection in a confined, non-tidal waterway. European Geosciences Union, General Assembly 2012-10453, Geophysical Research Abstracts 14.
Dhote, S. and Dixit, S., 2009. Water quality improvement through macrophytes – a review. Environ. Monit. Assess., 152, 149153.CrossRefGoogle ScholarPubMed
Dubois, J.P., 1994. Uptake of macroelements by the helophyte Phalaris arundinacea L. Aquat. Sci., 56, 7079.CrossRefGoogle Scholar
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. and Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev., 81, 163182.CrossRefGoogle ScholarPubMed
European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Comm., 22 December 2000, L327/1.
Evette, A., Labonne, S., Rey, F., Liebault, F., Jancke, O. and Girel, J., 2009. History of bioengineering techniques for erosion control in rivers inWestern Europe. Environ. Manage., 43, 972984.CrossRefGoogle Scholar
Fischenich, J.C., 2003. Effects of Riprap on Riverine and Riparian Ecosystems, U.S. Army Engineer Research and Development Center/Environmental Laboratory, TR-03-4, Vicksburg.Google Scholar
Goodson, J.M., Davenport, A., Gurnell, A.M. and Thompson, K., 2004. Hydrochory, river flow regime and riparian vegetation. In: Webb, B., Acreman, M., Maksimovic, C., Smithers, H. and Kirby, C. (eds.), Hydrology: Science and Practice for the 21st Century, Proceedings of the British Hydrological Society Conference held at Imperial College London, 12–16 July 2004, 99105.Google Scholar
Grime, J.P., 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties, Wiley, Chichester.Google Scholar
Gurnell, A.M., Boitsidis, A.J., Thompson, K. and Clifford, N.J., 2006a. Seed bank, seed dispersal and vegetation cover: colonization along a newly-created river channel. J. Veg. Sci., 17, 665674.CrossRefGoogle Scholar
Gurnell, A.M., Morrissey, I.P., Boitsidis, A.J., Bark, T., Clifford, N.J., Petts, G.E. and Thompson, K., 2006b. Initial adjustments within a new river channel: interactions between fluvial processes, colonizing vegetation, and bank profile development. Environ. Manage., 38, 580596.CrossRefGoogle ScholarPubMed
Haslam, S.M., 1987. Chapter 26: management and related interference. River Plants of Western Europe: The Macrophytic Vegetation of Watercourses of the European Economic Community, Cambridge University Press, Cambridge, 405419.Google Scholar
Herzon, I. and Helenius, J., 2008. Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv., 141, 11711183.CrossRefGoogle Scholar
Hodgson, J.G., Grime, J.P., Hunt, R. and Thompson, K., 1995. The Electronic Comparative Plant Ecology, Chapman & Hall, London.CrossRefGoogle Scholar
Hofmann, H., Lorke, A. and Peeters, F., 2008. The relative importance of wind and ship waves in the littoral zone of a large lake. Limnol. Oceanogr., 53, 368380.CrossRefGoogle Scholar
Hoitsma, T., 1999. Banking on bioengineering. Civil Eng., 69, 6062.Google Scholar
Hooimeijer, R.H., 1997. Sedimentatie in Natte Stroken, Technische Universiteit Delft, Faculteit der civiele Techniek, Vakgroep Waterbouwkunde, Delft.Google Scholar
Hou, W.S., Chang, Y.H., Wang, H.W. and Tan, Y.C., 2010. Using the behavior of seven amphibian species for the design of banks of irrigation and drainage systems inTaiwan. Irrig. Drain., 59, 493505.CrossRefGoogle Scholar
Hunt, R., Hodgson, J.G., Thompson, K., Bungener, P., Dunnett, N.P. and Askew, A.P., 2004. A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci., 7, 163170.CrossRefGoogle Scholar
IUCN, 2003. Guidelines for Application of IUCN Red List Criteria at Regional Levels: Version 3.0, IUCN Species Survival Commission, Gland and Cambridge.
Jenkins, M., 2003. Prospects for biodiversity. Science, 302, 11751177.CrossRefGoogle ScholarPubMed
Jongman, R.H., ter Braak, C.J.F. and van Tongeren, O.F.R., 1995. Data Analysis in Community and Landscape Ecology, Pudoc, Wageningen.CrossRefGoogle Scholar
Karle, K.F., Emmett, W.W. and Moore, N., 2005. Analysis of 11 bioengineered stream bank erosion control structures in Alaska. Transport. Res. Rec., 1941, 122128.CrossRefGoogle Scholar
Leps, J. and Smilauer, P., 2003. Multivariate Analysis of Ecological Data Using Canoco, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Londo, G., 1988. Nederlandse Freatofyten, Pudoc, Wageningen.Google Scholar
Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akcakaya, H.R., Leader-Williams, N., Milner-Gulland, E.J. and Stuart, S.N., 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol., 22, 14241442.CrossRefGoogle ScholarPubMed
Mainstone, C.P. and Parr, W., 2002. Phosphorus in rivers – ecology and management. Sci. Tot. Environ., 282–283, 2547.CrossRefGoogle Scholar
Malmqvist, B. and Rundle, S., 2002. Threats to the running water ecosystems of the world. Environ. Conserv., 29, 134153.CrossRefGoogle Scholar
Merritt, D.M. and Wohl, E.E., 2002. Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecol. Appl., 12, 10711087.CrossRefGoogle Scholar
Mitsch, W.J. and Jørgensen, S.E., 2003. Ecological engineering: a field whose time has come. Ecol. Eng., 20, 363377.CrossRefGoogle Scholar
Mouton, A., Buysse, D., Stevens, M., Van den Neucker, T. and Coeck, J., 2012. Evaluation of riparian habitat restoration in a lowland river. River Res. Appl., 28, 845857.CrossRefGoogle Scholar
Murphy, K., Willby, N.J. and Eaton, J.W., 1995. Ecological impacts and management of boat traffic on navigable inland waterways. In: Harper, D.M. and Ferguson, A.J.D. (eds.), The Ecological Basis for River Management, John Wiley & Sons, Chichester, 427442.Google Scholar
Pinheiro, J. and Bates, D., 2000. Mixed-Effects Models in S and S-PLUS. Statistics and Computing Series, Springer-Verlag, New York.CrossRefGoogle Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Development Core Team, 2011. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.
Potts, S.G., Biesmeijer, J.C., Bommarco, R., Felicioli, A., Fischer, M., Jokinen, P., Kleijn, D., Klein, A., Kunin, W.E., Neumann, P., Penev, L.D., Petanidou, T., Rasmont, P., Roberts, S.P.M., Smith, H.G., Sørensen, P.B., Steffan-Dewenter, I., Vaissière, B.E., Vilà, M., Vujić, A., Woyciechowski, M., Zobel, M., Settele, J. and Schweiger, O., 2011. Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. J. Apicult. Res., 50, 152164.CrossRefGoogle Scholar
R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.PubMed
Rolletschek, H., 1999. The impact of reed-protecting structures on littoral zones. Limnologica, 29, 8692.CrossRefGoogle Scholar
Russ, J.M. and Montgomery, W.I., 2002. Habitat associations of bats in Northern Ireland: implications for conservation. Biol. Conserv., 108, 4958.CrossRefGoogle Scholar
Schiereck, G.J., 2004. Introduction to Bed, Bank and Shore Protection, Spon Press, New York.CrossRefGoogle Scholar
Schulz, M., Kozerski, H.-P., Pluntke, T. and Rinke, K., 2003. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res., 37, 569578.CrossRefGoogle Scholar
Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379423.CrossRefGoogle Scholar
Shi, R.H., Xu, S.G. and Li, X.G., 2009. Assessment and prioritization of eco-revetment projects in urban rivers. River Res. Appl., 25, 946961.CrossRefGoogle Scholar
Shields, F.D., Bowie, A.J. and Cooper, C.M., 1995. Control of streambank erosion due to bed degradation with vegetation and structure. Water Resour. Bull., 31, 475489.CrossRefGoogle Scholar
Smarts, M.M., Radar, R.R., Nielsen, D.N. and Claflin, T.O., 1985. The effect of commercial and recreational traffic on the resuspension of sediment in Navigation Pool 9 of theUpper Mississippi River. Hydrobiologia, 126, 263274.CrossRefGoogle Scholar
Smolders, A.J.P. and Roelofs, G.J.M., 1993. Sulphate mediated iron limitation and eutrophication in aquatic ecosystems. Aquat. Bot., 46, 247253.CrossRefGoogle Scholar
Söhngen, B., Koop, J., Knight, S., Rythönen, J., Beckwith, P., Ferrari, N., Iribarren, J., Kevin, T., Wolter, C. and Maynord, S., 2008. Considerations to reduce environmental impacts of vessels. Report of PIANC INCOM Working Group 27, Part I, PIANC Report Series.
Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D. and Peiry, J.L., 2005. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl., 21, 719737.CrossRefGoogle Scholar
Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.M., Muller, E. and Decamps, H., 2000. Impact of riparian vegetation on hydrological processes. Hydrol. Process., 14, 29592976.3.0.CO;2-B>CrossRefGoogle Scholar
Ter Braak, C.J.F. and Smilauer, P., 2002. Canoco Reference Manual and Canodraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5), Biometris, Wageningen.Google Scholar
Van Landuyt, W., Vanhecke, L. and Hoste, I., 2006. Rode Lijst van de vaatplanten van Vlaanderen en het Brussels Hoofdstedelijk Gewest. In: Van Landuyt, W., Hoste, I., Vanhecke, L., Van den Bremt, P., Vercruysse, E. and De Beer, D. (eds.), Atlas van de Flora van Vlaanderen en het Brussels Gewest, Instituut voor Natuur-en Bosonderzoek, Nationale Plantentuin van België and FloWer, Brussels, 6980.Google Scholar
Vermaat, J.E. and De Bruyne, R.J., 1993. Factors limiting the distribution of submerged waterplants in the lowland River Vecht (The Netherlands). Freshwater Biol., 30, 147157.CrossRefGoogle Scholar
Weber, A., Lautenbach, S. and Wolter, C., 2012. Improvement of aquatic vegetation in urban waterways using protected artificial shallows. Ecol. Eng., 42, 160167.CrossRefGoogle Scholar
Wichert, G.A. and Rapport, D.J., 1998. Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environ. Manage., 22, 425443.CrossRefGoogle Scholar
Willby, N.J. and Eaton, J.W., 1996. Backwater habitats and their role in nature conservation on navigable waterways. Hydrobiologia, 340, 333338.CrossRefGoogle Scholar
Wolter, C. and Arlinghaus, R., 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev. Fish Biol. Fisher., 13, 6389.CrossRefGoogle Scholar