Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:53:38.322Z Has data issue: false hasContentIssue false

Consecutive earthquakes temporarily restructured the zooplankton community in an Alpine Lake

Published online by Cambridge University Press:  20 March 2012

Anton Brancelj*
Affiliation:
National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia Faculty of Environmental Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
Uroš Žibrat
Affiliation:
National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
Tadej Mezek
Affiliation:
National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
Irena Rejec Brancelj
Affiliation:
Anton Melik Geographical Institute, ZRC SAZU, Gosposka ulica 13, 1000 Ljubljana, Slovenia
Henri J. Dumont*
Affiliation:
Department of Biology, State University of Ghent, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
*
*Corresponding author: [email protected]
Get access

Abstract

Two consecutive earthquakes temporary changed a zooplankton community in a high-mountain Lake Krn (altitude 1383 m a.s.l.). It was dominated by the eurytherm copepod, Cyclops vicinus, until 1998, when the first earthquake hit the lake (EMS=5.6). After the earthquake, the population of C. vicinus collapsed and the thermophilic cladoceran, Ceriodaphnia quadrangula, took over. After the second earthquake in 2004 (EMS=4.0), C. vicinus became untraceable. In 2008, few copepods reappeared and by 2010 they became the sole dominant again. Only Secchi-disc depth showed a statistically significant increase over time, while Ntot, Ptot and temperature showed an increasing trend, yet the relationship was insignificant. To compare multi-parameter properties of the water column, the studied period was divided into Period 1 (before the first earthquake), Period 2 (between earthquakes) and Period 3 (after the second earthquake). A Hotteling T2 test confirmed a statistically significant difference between Periods 1 and 2 & 3 (P<0.01), but not between Periods 2 and 3 (P>0.1). During simple laboratory experiment, specimens of C. vicinus were covered with a thin layer of sediment, to mimic the earthquake's effect on their survival. A hypothesis was that the timing of both earthquakes had been crucial for decimation of C. vicinus population as they re-suspended sediment with hibernating copepodites. As these became subsequently buried they were deprived of a re-activation signal and exposed prolonged anoxic conditions there. C. quadrangula temporary filled the void left by the copepod, which needed 6 years to regain its dominance.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, P.G., 2000. Radiometric dating of sediment records in European mountain lakes. J. Limnol., 1 (Suppl. 1), 114.Google Scholar
Battarbee, R.W., Thompson, R., Catalan, J., Grytnes, J.-A. and Birks, H.J.B., 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J. Paleolimnol., 28, 16.CrossRefGoogle Scholar
Brancelj, A., 1999. The extinction of Arctodiaptomus alpinus (Copepoda) following the introduction of Arctic char into a small alpine lake Dvojno Jezero (NW Slovenia). Aquat. Ecol., 33, 355361.CrossRefGoogle Scholar
Brancelj, A., 2002. Fauna: Zooplankton, Benthos and Fish. In: Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 137158.Google Scholar
Brancelj, A., Šiško, M., Rejec Brancelj, I., Jeran, Z. and Jaćimović, R., 2000a. Effect of land use and fish stocking on a mountain lake – evidence from the sediment. Period. Biol., 102, 259268.Google Scholar
Brancelj, A., Šiško, M., Lami, A., Appleby, P., Livingstone, D.M., Rejec Brancelj, I. and Ogrin, D., 2000b. Changes in the trophic level of an Alpine lake, Jezero v Ledvici (NW Slovenia), induced by earthquakes and climate change. J. Limnol., 1 (Suppl. 1), 2942.Google Scholar
Cammarano, P. and Manca, M., 1997. Studies on zooplankton in two acidified high mountain lakes in the Alps. Hydrobiologia, 356, 97109.CrossRefGoogle Scholar
Carrara, P.E. and O'Neill, J.M., 2003. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quatern. Res., 59, 2535; doi:10.1016/S0033-5894(02)00010-8.CrossRefGoogle Scholar
Catalan, J., Ventura, M., Brancelj, A., Granados, I., Thies, H., Nickus, U., Korhola, A., Lotter, A.F., Barbieri, A., Stuschlik, E., Lien, L., Bitušik, P., Buchaca, T., Camarero, L., Goudsmith, G.H., Kopaček, J., Lemcke, G., Livingston, D.M., Müller, B., Rautio, M., Šiško, M., Sorvari, S., Šporka, F., Strunecky, O. and Toro, M., 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J. Paleolimnol., 28, 2546.CrossRefGoogle Scholar
Catalan, J., Barbieri, M.G., Bartumeus, F., Bitušík, P., Botev, I., Brancelj, A., Cogălniceanu, D., Manca, M., Marchetto, A., Ognjanova-Rumenova, N., Pla, S., Rieradevall, M., Sorvari, S., Štefkova, E., Stuchlík, E. and Ventura, M., 2009. Ecological thresholds in European alpine lakes. Freshw. Biol., 54, 24942517; doi:10.1111/j.1365-2427.2009.02286.x.CrossRefGoogle Scholar
Cavalli, L., Miquelis, A. and Chappaz, R., 2001. Combined effects of environmental factors and predator-prey interactions on zooplankton assemblages in five high alpine lakes. Hydrobiologia, 455, 127135.CrossRefGoogle Scholar
Clesceri, L.S., Greenberg, A. and Eaton, A.D. (eds.), 1998. APHA, AWWA, WEF: Standard Methods for the Examination of Water and Wastewater, 20th edn, United Book Press Inc., Washington, 149.Google Scholar
Dobravec, J. and Šiško, M., 2002. Geographical location and description of the lakes. In: Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 4976.Google Scholar
Dumont, H.J. and Negrea, S.V., 2002. Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 19, Backhuys, Leiden, 398 p.
Dussart, B.H. and Defaye, D., 2001. Introduction to the Copepoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 16 (2nd edn), Backhuys, Leiden, 344 p.
Fott, J., Pražaková, M., Stuchlík, E. and Stuchlícová, Z., 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia, 274, 3747.CrossRefGoogle Scholar
Fox, J.A., 2007. Hatching timing of Daphnia mendotae diapausing eggs of different ages. Fund. Appl. Limnol., 168, 1926.CrossRefGoogle Scholar
Gliwicz, Z.M., Slusaraczyk, A. and Slusaraczyk, M., 2001. Life history synchronization in a long-lifespan single-cohort Daphnia population in a fishless alpine lake. Oecologia, 128, 368378.CrossRefGoogle Scholar
Goyke, A.P. and Hershey, A.E., 1992. Effects of fish predation on larval chironomid (Diptera: Chironomidae) communities in an arctic ecosystem. Hydrobiologia, 240, 203211.CrossRefGoogle Scholar
Grant, R.A., Halliday, T., Balderer, P., Leuenberger, F., Newcomer, M., Cyr, G. and Freund, F.T., 2011. Ground water chemistry changes before major earthquakes and possible effects on animals. Int. J. Environ. Res. Public Health, 2011, 19361956; doi:10.3390/ijerph8061936.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp. Geosci., 13, 1335.CrossRefGoogle Scholar
Gulizzoni, P., Lami, A., Manca, M., Musazzi, S., Marchetto, A., 2006. Palaeoenvironmental changes inferred from biological remains in short lake sediment cores from the Central Alps and Dolomites. Hydrobiologia, 562, 167191.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. Paleontological Statistics Software  Package for Education and Data Analysis. Palaeontol. Electr., 4, 3948.Google Scholar
Heiri, O., Lotter, A.F., 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J. Paleolimnol., 30, 273289.CrossRefGoogle Scholar
Hořická, Z., Stuchlík, E., Hudec, I., Martin Černý, M. and Fott, J., 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: the Tatra Mountains (Slovakia, Poland). Biologia, Bratislava, 61 (Suppl. 18), 121134; doi:10.2478/s11756-006-0125-6.CrossRefGoogle Scholar
Jeffrey, S.W. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 191194.CrossRefGoogle Scholar
Jersabek, C.D., Brancelj, A., Stoch, F. and Schabetsberger, R., 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia, 453, 309324.CrossRefGoogle Scholar
Johnson, D.M., Martin, T.H., Crowley, P.H. and Crowder, L.B., 1996. Link strength in littoral food webs: Net effects of small sunfish and larval dragonflies. J. N. Am. Benthol. Soc., 15, 271288.CrossRefGoogle Scholar
Koinig, K.A., Kamenik, C., Schmidt, R., Agustí-Panareda, A., Appleby, P., Lami, A., Prazakova, M., Rose, N., Schnell, Ø.A., Tessadri, R., Thompson, R. and Psenner, R., 2002. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries – the influence of air temperature on biological parameters. J. Paleolimnol., 28, 147160.CrossRefGoogle Scholar
Korup, O., McSaveney, M.J. and Davies, T.R.H., 2004. Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology, 61, 189207.CrossRefGoogle Scholar
Levine, S.N., Zehrer, R.F. and Burns, C.W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol., 50, 15151536; doi:10.1111/j.1365-2427.2005.01420.x.CrossRefGoogle Scholar
Luger, M.S., Schabetsberger, R., Jersabek, C.D. and Goldschmid, A., 2000. Life cycles, size and reproduction of the two coexisting calanoid copepods Arctodiaptomus alpinus (Imhof, 1885) and Mixodiaptomus laciniatus (Lilljeborg, 1889) in a small high-altitude lake. Arch. Hydrobiol., 148, 161185.CrossRefGoogle Scholar
Muri, G. and Brancelj, A., 2002. Physical and chemical properties of lake water and ice cover. In: Brancelj, A. (ed.), High-Mountain Lakes in the Eastern part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 91109.Google Scholar
Nomade, J., Chapron, E. and Desmet, M., 2005. Reconstructing historical seismicity from lake sediments (Lake Laffrey, western Alps, France). Terra Nova, 17, 350357.CrossRefGoogle Scholar
Radziminovich, Y.B., Shchetnikov, A.A. and Vologina, E.G., 2010. The “methane eruption” on Lake Baikal in 1912 as an effect of a strong earthquake. Dokl. Earth Sci., 432, 583586.CrossRefGoogle Scholar
Sacherová, V., Kršková, R., Stuchlík, E., Hořická, Z., Hudec, I. and Fott, J., 2006. Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava, 61 (Suppl. 18), 109119.CrossRefGoogle Scholar
Samuel, H., Jephson, T., Lebret, K., Einem, J., Fagerberg, T., Balseiro, E., Modenutti, B., Souza, S.S., Laspoumaderes, C., Jönsson, M., Ljungberg, P., Nicolle, A., Nilsson, P.A., Ranåker, L. and Hansson, L.-A., 2011. Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. J. Plankt. Res., 33, 12391248.Google Scholar
Santer, B., 1998. Life cycle strategies of free-living copepods in fresh waters. J. Mar. Syst., 15, 327336.CrossRefGoogle Scholar
Schabetsberger, R., Grill, S., Hauser, G. and Wukits, P., 2006. Zooplankton successions in neighboring lakes with contrasting impacts of amphibian and fish predators. Internat. Rev. Hydrobiol., 91, 197221.CrossRefGoogle Scholar
Schabetsberger, R., Luger, M.S., Drozdowski, G. and Jagsch, A., 2009. Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biol. Inv., 11, 13351345.CrossRefGoogle Scholar
Smirnov, N.N., 1971. Chydoridae fauny mira. Fauna SSSR. Rakoobraznye=Chydoridae Fauna of the World. Fauna of the USSR. Crustaceans. Nauka, Leningrad, 531 p.
Sommaruga, R., 2001. The role of UV radiation in the ecology of alpine lakes. J. Photoch. Photobiol., B-Biol., 62, 3542; doi:10.1016/S1011-1344(01)00154-3.CrossRefGoogle ScholarPubMed
Šiško, M. and Kosi, G., 2002. Algae. In: Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 111128.Google Scholar
Šporka, F., Štefková, E., Bitušík, P., Thompson, A.R., Agustí-Panareda, A., Appleby, P.G., Gryntes, J.A., Kamenik, C., Krno, I., Lami, A., Rose, N. and Shilland, N.E., 2002. The paleolomnological analysis of sediments from high mountain lake Nizne Terianske Pleso in the High Tatras (Slovakia). J. Paleolimnol., 28, 95109.CrossRefGoogle Scholar
ter Braak, C.J.F. and Smilauer, P., 2002. CANOCO – Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.
Theis, H., 1994. Chemical properties of an acidified humic headwater lake with respect to reducing acidic depositions and expected climate-change. Hydrobiologia, 274, 143154.CrossRefGoogle Scholar
Vidrih, R., 2008. Potresna dejavnost Zgornjega Posočja [Seizmic activity of the Upper Posočje area]. Agencija republike Slovenije za okolje, Urad za seizmologijo in geologijo [Environmental Agency of the Republic of Slovenia, Seizmology and Geology office], Ljubljana, 352 p.
Vinebrooke, R.D. and Leavitt, P.R., 1998. Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web. Limnol. Oceanogr., 43, 10651081.CrossRefGoogle Scholar
Wograth, S. and Psenner, R., 1995. Seasonal, annual and long-term variability in the water chemistry of a remote high mountain lake: Acid rain versus natural changes. Water Air Soil Poll., 85, 359364.CrossRefGoogle Scholar
Wetzel, R.G., 2003. Limnology. Lake and River Ecosystems (3rd edn), Academic Press, London, 1006 p.Google Scholar