Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T12:13:48.722Z Has data issue: false hasContentIssue false

Colonisation of temporary macrophyte substratum by midges (Chironomidae: Diptera)

Published online by Cambridge University Press:  16 August 2010

Dubravka Čerba
Affiliation:
Department of Biology, Josip Juraj Strossmayer University, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia
Zlatko Mihaljević*
Affiliation:
Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
Jasna Vidaković
Affiliation:
Department of Biology, Josip Juraj Strossmayer University, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia
*
*Corresponding author: [email protected]
Get access

Abstract

This study investigates a phytophylous community of Chironomidae larvae on the submerged plant species Myriophyllum spicatum L. in a eutrophic lake (Lake Sakadaš, Danube floodplain area in Croatia) during summer 2004. This macrophyte species appeared for the first time in the lake in 2004, lasted approximately three months and was considered as a temporary habitat. The chironomid community was very abundant in the stands of this macrophyte species, which developed at three sites. The recorded species belong to three subfamilies: Chironominae (Chironomini and Tanytarsini), Orthocladiinae and Tanypodinae. Species composition varied in time, though Orthocladiinae with their representative Cricotopus sylvestris gr. dominated throughout the entire sampling period, accounting for approx. 60% of the total community. However, the presence of this species group experienced a marked drop to only 10% in September when Chironomini larvulae and Paratanytarsus sp. prevailed. Furthermore, the share of Endochironomus albipennis (Meigen 1830) in relation to other species was also consistently higher. NMDS ordination and cluster analysis separated three main colonization periods based on larval abundance. RDA analysis indicated the influence of environmental variables, especially Secchi depth, macrophyte dry weight, depth and water temperature, on chironomid community structure.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APHA, 1985. Standard methods for examination of water and wastewater, American Public Health Association, 16th Edition, Washington, 1268 p.PubMed
Armitage, P.D., Cranston, P.S. and Pinder, L.C.V., 1995. The Chironomidae: Biology and ecology of nonbiting midges, Chapman and Hall, London, 572 p.CrossRefGoogle Scholar
Balci, P. and Kennedy, J.H., 2003. Comparison of chironomids and other macroinvertebrates associated with Myriophyllum spicatum and Heteranthera dubia . J. Freshwater Ecol. , 18, 235247.CrossRefGoogle Scholar
Bitušík, P., Svitok, M., Kološta, P. and Hubková, M., 2006. Classification of the Tatra Mountain lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia , 61, 191201.CrossRefGoogle Scholar
Bogut, I., Vidaković, J. and Palijan, G., 2003. Trophic state and water quality in Kopački rit during 2002. In: Gereš, D. (ed.), Croatian waters in 21st century: Proceedings of the 3rd Croatian Conference on Waters, Croat. Waters , 173180.Google Scholar
Bogut, I., Vidaković, J., Palijan, G. and Čerba, D., 2007. Benthic macroinvertebrates associated with four species of macrophytes. Biologia , 62, 600606.CrossRefGoogle Scholar
Bogut, I., Vidaković, J., Čerba, D. and Palijan, G., 2009. Epiphytic meiofauna in stands of different submerged macrophytes. Ekoloji , 70, 19.CrossRefGoogle Scholar
Bogut, I., Čerba, D., Vidaković, J. and Gvozdić, V., 2010. Interactions of weed-bed invertebrates and Ceratophyllum demersum L. stands in a floodplain lake. Biologia , 65, 113121.Google Scholar
Botts, P.S. and Cowell, B.C., 1992. Feeding selectivity of two species of epiphytic chironomids in a subtropical lake. Oecologia , 89, 331337.CrossRefGoogle Scholar
Brodersen, K.P., Odgaard, B., Vestergaard, O. and Anderson, N.J., 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: Chironomid-Macrophyte co-occurrence. Freshwater Biol. , 46, 253267.CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G. and Heiri, O., 2007. The identification and use of palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide , 10, 276 p.Google Scholar
Carlson, R.E. and Simpson, J., 1996. A coordinator's guide to volunteer lake monitoring methods, North American Lake Management Society, 96 p.Google Scholar
Cheruvelil, K.S., Soranno, P.A., Madsen, J.D. and Roberson, M.J., 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. J. N. Am. Benthol. Soc. , 21, 261277.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N., 2006. PRIMER v6: User manual/tutorial, PRIMER-E, Plymouth, 92 p.Google Scholar
Cranston, P.S., 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshw. Biol. Assoc. Sc. Publ. , 45, 152 p.Google Scholar
Cuda, J.P., Coon, B.R., Dao, Y.M. and Center, T.D., 2002. Biology and laboratory rearing of Cricotopus lebetis (Diptera: Chironomidae), a natural enemy of the aquatic weed hydrilla (Hydrocharitaceae). Ann. Entomol. Soc. Am. , 95, 587596.CrossRefGoogle Scholar
Čerba, D., Bogut, I., Vidaković, J. and Palijan, G., 2009. Invertebrates in Myriophyllum spicatum L. stands in Lake Sakadaš, Croatia. Ekologia , 28, 94105.Google Scholar
Darby, R.E., 1962. Midges associated with California rice fields, with special reference to their ecology (Diptera: Chironomidae). Hilgardia , 31, 1206.CrossRefGoogle Scholar
Dévai, G., 1990. Ecological background and importance of change of chironomid fauna (Diptera: Chironomidae) in shallow Lake Balaton. Hydrobiologia , 191, 189198.CrossRefGoogle Scholar
Diehl, S., 1992. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology , 73, 16461661.CrossRefGoogle Scholar
Dvořák, J., 1996. An example of relationship between macrophytes, macroinvertebrates and their food resources in a shallow eutrophic lake. Hydrobiologia , 339, 2736.CrossRefGoogle Scholar
Frouz, J., Matěna, J. and Ali, A., 2003. Survival strategies of chironomids (Diptera: Chironomidae) living in temporary habitats: a review. Eur. J. Entomol. , 100, 459465.CrossRefGoogle Scholar
Hamerlík, L. and Bitušík, P., 2009. The distribution of littoral chironomids along an altitudinal gradient in High Tatra Mountain lakes: Could they be used as indicators of climate change? Ann . Limnol. - Int. J. Lim. , 45, 145156.CrossRefGoogle Scholar
Hamerlík, L. and Brodersen, K.P., 2010. Non-biting midges (Diptera: Chironomidae) from fountains of two European cities: micro-scale island biogeography. Aquat. Insects , 32, 6779.CrossRefGoogle Scholar
Hamilton, S.K. and Lewis, W.M., 1987. Causes of seasonality in the chemistry of a lake on the Orinoco River floodplain, Venezuela. Limnol. Oceanogr. , 32, 12771290.CrossRefGoogle Scholar
Hann, B.J., 1995. Invertebrate associations with submersed aquatic plants in a prairie wetland. UFS (Delta Marsh) Annual Report , 30, 7884.Google Scholar
Harrison, S.S.C. and Hildrew, A.G., 1998. Patterns in the epilithic community of a lake littoral. Freshwater Biol. , 39, 477492.CrossRefGoogle Scholar
Kornijów, R., Gulati, R.D. and Ozimek, T., 1995. Food preference of freshwater invertebrates: comparing fresh and decomposed angiosperm and a filamentous alga. Freshwater Biol. , 33, 205212.CrossRefGoogle Scholar
Królikowska, J., Přibáň, K. and Šmíd, P., 1998. Micro-climatic conditions and water economy of wetlands vegetation. In: Westlake, D.F., Květ, J. and Szczepański, A. (eds.), The Production Ecology of Wetlands, Cambridge University Press, Cambridge, 367404.Google Scholar
Kuczyńska-Kippen, N., 2007. Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia , 593, 2737.CrossRefGoogle Scholar
Kumari, M., Kangur, K. and Haldna, M., 2007. Variation of macrozoobenthos communities in the reed Phragmites australis belt of two large shallow lakes. Proc. Estonian Acad. Sci. Biol. Ecol. , 56, 141153.Google Scholar
Květ, J. and Westlake, D.F., 1998. Primary production in wetlands. In: Westlake, D.F., Květ, J. and Szczepański, A. (eds.), The Production Ecology of Wetlands, Cambridge University Press, Cambridge, 78168.Google Scholar
Langdon, P.G., Ruiz, Z., Brodersen, K.P. and Foster, I.D.L., 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biol. , 51, 562577.CrossRefGoogle Scholar
Marques, M.M.G.S.M., Barbosa, F.A.R. and Calisto, M., 1999. Distribution and abundance of Chironomidae (Diptera, Insecta) in an impacted watershed in South-east Brazil. Rev. Bras. Biol. , 59, 553561.CrossRefGoogle Scholar
McRae, I.V., Winchester, N.N. and Ring, R.A., 1990. Feeding activity and host preference of milfoil midge, Cricotopus myriophylli Oliver (Diptera: Chironomidae). J. Aquat. Plant. Manage. , 28, 8992.Google Scholar
Menzie, C.A., 1980. The Chironomid (Insecta: Diptera) and other fauna of a Myriophyllum spicatum L. plant bed in the lower Hudson River. Estuaries , 3, 3854.Google Scholar
Menzie, C.A., 1981. Production ecology of Cricotopus sylvestris (Fabricius) (Diptera: Chironomidae) in a shallow estuarine cove. Limnol. Oceanogr. , 26, 467481.CrossRefGoogle Scholar
Mihaljević, M., Stević, F., Horvatić, J. and Hackenberger Kutuzović, B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia , 617, 7788.CrossRefGoogle Scholar
Mihaljević, Z., Kerovec, M., Tavčar, V. and Bukvić, I., 1998. Macroinvertebrate community on an artificial substrate in the Sava River: long-term changes in the community structure and water quality. Biologia , 53, 611620.Google Scholar
Mihaljević, Z., Tavčar, V., Kerovec, M. and Bukvić, I., 2000. Vertical distribution of Chironomidae larvae in the karstic travertine barrage Lake Visovac (Croatia). In: Hoffrichter, O. (ed.), Late 20th century research on Chironomidae: an anthology from the 13th International symposium on Chironomidae, Berichte aus der Biologie, Shaker Verlag, Aachen, 325333.Google Scholar
Mihaljević, Z., Kerovec, M., Ternjej, I. and Popijač, A., 2004. Long-term changes in the macroinvertebrate community structure of a shallow Mediterranean lake. Ekologia , 23, 421429.Google Scholar
Nazarova, L.B., Riss, H.W., Kahlheber, A. and Werding, B., 2004. Some observations of buccal deformities in chironomid larvae (Diptera: Chironomidae) from the Ciénaga Grande de Santa Marta, Colombia. Caldasia , 26, 275290.Google Scholar
Olde Venterink, H., Hummelink, E. and den Hoorn, M.W., 2003. Denitrification potential of a river during flooding with nitrate-rich water: grasslands versus reedbeds. Biogeochem. , 65, 233244.CrossRefGoogle Scholar
Palijan, G. and Fuks, D., 2006. Alternation of factors affecting bacterioplankton abundance in the Danube River floodplain (Kopački Rit, Croatia). Hydrobiologia , 560, 405415.CrossRefGoogle Scholar
Peršić, V., Čerba, D., Bogut, I. and Horvatić, J., to appear. Trophic state and water quality in the Danube floodplain lake (Kopački Rit Nature Park, Croatia) in relation to hydrological connectivity. In: Ansari, A.A., Singh, S. and Lanza Guy, R. (eds.), Eutrophication: Causes, Consequences and Control, Springer (in press).
Pieczyńska, E., Kołodziejczyk, A. and Rybak, J.I., 1999. The responses of littoral invertebrates to eutrophication-linked changes in plant communities. Hydrobiologia , 391, 921.CrossRefGoogle Scholar
Prejs, A., Koperski, P. and Prejs, K., 1997. Food-web manipulation in small, eutrophic Lake Wirbel, Poland: the effect of replacement of key predators on epiphytic fauna. Hydrobiologia , 342/343, 377381.CrossRefGoogle Scholar
Punti, M., Rieradevall, M. and Prat, N., 2007. Chironomidae assemblages in reference condition Mediterranean streams: environmental factors, seasonal variability and ecotypes. Fundam. Appl. Limnol. (Arch. Hydrobiol.) , 170, 149165.CrossRefGoogle Scholar
RAMSAR, 2005. The list of wetlands of international importance, The Secretariat of the Convention on Wetlands, Gland, 36 p.
Rieradevall, M. and Brooks, S.J., 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephylic setation. J. Paleolimnol. , 25, 8199.CrossRefGoogle Scholar
Rossaro, B., 1987a. Chironomid emergence in the Po river (Italy) near a nuclear power plant. Entomologica Scandinavica, Suppl. , 29, 331338.Google Scholar
Rossaro, B., 1987b. Insect emergence in a stretch of the Po river (Italy). Arch. Hydrobiol. , 109, 245256.Google Scholar
Rossaro, B., 1991. Chironomids and water temperature. Aquat. Insects , 13, 8798.CrossRefGoogle Scholar
Schmid, P.E., 1993. A key to the larval Chironomidae and their instars from Austrian Danube Region streams and rivers, Part I: Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser, Suppl. , 3, 514 p.Google Scholar
Soszka, G.J., 1975. The invertebrates on submersed macrophytes in three Masurian lakes. Ekol. Pol. , 23, 271391.Google Scholar
Streble, H. and Krauter, D., 2002. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Suswassers, Kosmos, Stutgart, 358 p.Google Scholar
Tavčar, V., 1988. Populations of the larvae of Chironomidae (Diptera) in biocenoses of benthos and periphyton of some streams in Psunj and Papuk mountains. Biosistematika , 14, 3141. (In Croatian, English summary.)Google Scholar
Tavčar, V., 1993. Chironomid (Diptera) larvae of the Butoniga Reservoir, Istria, Croatia, and its feeder rivers. Hydrobiologia , 262, 8996.CrossRefGoogle Scholar
ter Braak, C.J. and Šmilauer, P., 2002. CANOCO reference manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power (Ithaca, NY, USA), 500 p.Google Scholar
Thorp, J.H. and Chesser, R.K., 1983. Seasonal responses of lentic midge assemblages to environmental gradients. Holoarctic Ecol. , 6, 123132.Google Scholar
Tóth, M., Móra, A., Kiss, B. and Dévai, G., 2008. Chironomid communities in different vegetation types in a backwater Nagy-Morotva of the active floodplain of river Tisza, Hungary. Bol. Mus. Mun. Funchal , 13, 169175.Google Scholar
Vidaković, J. and Bogut, I., 2007. Periphyton nematode assemblages in association with Myriophyllum spicatum L. in Lake Sakadaš Croatia. Russ. J. Nematol. , 15, 7988.Google Scholar
Vidaković, J., Bogut, I., Borić, E. and Zahirović, Ž., 2002. Hydrobiological research in the Kopački Rit Nature Park in the period November 1997 – October 2001. Croat. Waters , 10, 127144.Google Scholar
Vidaković, J., Palijan, G. and Čerba, D., to appear. Relationship between nematode community and biomass and composition of periphyton developing on artificial substrates in floodplain lake. Pol. J. Ecol .
Walsh, B.M., 1951. The function of haemoglobin in relation to filter feeding in leaf-mining chironomid larvae. J. Exp. Biol. , 28, 5761.Google Scholar
Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region, Keys and diagnoses. Part I: Larvae. Ent. Scand., Suppl. , 19, 1457.Google Scholar
Wotton, R.S., Armitage, P.D., Aston, K., Blackburn, J.H., Hamburger, M. and Woodward, C.A., 1992. Colonization and emergence of midges (Chironomidae: Diptera) in slow sand filter beds. Neth. J. Aquat. Ecol. , 26, 331339.CrossRefGoogle Scholar