Published online by Cambridge University Press: 23 July 2012
Headwater woodland streams are primarily heterotrophic: they receive substantial inputs of organic matter from the riparian vegetation, while autochthonous primary production is generally low. A substantial part of leaf litter entering running waters may be buried in the streambed because of flooding and sediment movement. Although the general significance of the hyporheic zone for stream metabolism has been reported early, organic matter storage within the sediment of streams has received less attention, with most studies only quantifying accumulations at the streambed surface and ignoring other stream compartments. In the present study, the amounts of three fractions of coarse particulate organic matter (CPOM; >16, 4–16 and 1–4 mm) were determined in late autumn and early spring in the interstitial and benthic zones of three headwater streams of the Montagne Noire (South-Western France) differing in their substratum grain size. Our findings demonstrated that the total CPOM content in the interstitial zone can be much (up to one order of magnitude) higher than at the sediment surface. The sandy bottomed stream exhibited a higher amount of CPOM (whatever the size fraction) than the two other streams, suggesting that the sediment particle size may be a major determinant of CPOM storage. Given the large amount of organic matter stored in the interstitial zone, this compartment may play an important role for the carbon turnover and associated trophic dynamics in the stream ecosystem.