Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:02:40.913Z Has data issue: false hasContentIssue false

Bryophyte communities and seston in a karst stream (Jankovac Stream, Papuk Nature Park, Croatia)

Published online by Cambridge University Press:  20 March 2012

Maria Špoljar*
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
Tvrtko Dražina
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
Ana Ostojić
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
Marko Miliša
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
Marija Gligora Udovič
Affiliation:
Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
Dagmar Štafa
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia
*
*Corresponding author: [email protected]
Get access

Abstract

An investigation into bryophyte communities in karst Jankovac Stream (Papuk Nature Park, Croatia) was carried out once a month from July 2008 to June 2009. Samples were taken from two lotic microhabitats: (i) Jankovac Spring (JS), a hypocrenal habitat with dense bryophyte clusters (90% bottom cover) and (ii) Jankovac Waterfall (JW), with scattered bryophyte clusters (50% bottom cover). At the same time, seston samples were collected during the spring as the source site and after the JW, as the outflow site. The goals of this study were to understand the (i) algal, protozoan and metazoan bryophyte community assemblages in these two lotic microhabitats, (ii) influence of environmental factors on the structuring of the bryophyte community and (iii) structure of seston along the longitudinal profile. A total of 172 taxa were determined: 68 algae, 55 protozoa, 24 meiofauna and 25 macroinvertebrates. Statistically significant differences between two microhabitats differing in percentage of bryophyte cover were established testing 13 environmental parameters. In dense bryophyte clusters, community structure was determined by flow velocity and pH, and macroinvertebrates achieved higher diversity and abundance. On the contrary, in scattered bryophyte coverage algae, protozoa and meiofauna reached higher abundance and diversity governed by the amount of suspended organic matter and epiphyton. In contrast to previous studies, the inverse ratio of community diversity and abundance versus percentage of bryophyte cover was established. We assume this to be the result of an enrichment of the scattered bryophyte clusters by upstream seston. Additionally, the effects of anthropogenic hydromorphological disturbance are reflected in macroinvertebrate diversity and abundance reduction.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredeicq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., Mccourt, R.M., Mendoza, L., Moenstrup, Ø., Mozley-Standridge, S., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W. and Taylor, M.J.R., 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Euk. Microb., 52, 399451.CrossRefGoogle ScholarPubMed
APHA, 1985. Standard Methods for the Examination of Water and Waste (12th edn), American Public Health Association, New York, 1268 p.
Basu, B.K., Kalff, J. and Pinel-Alloul, B., 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St. Lawrence River. Freshw. Biol., 45, 373382.CrossRefGoogle Scholar
Basu, B.K. and Pick, F.R., 1996. Factor regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr., 41, 15721577. Google Scholar
Bauernfeind, E. and Humpesch, U.H., 2001. Die Eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): Bestimmung und Ökologie, Verlag des Naturhistorischen Museums, Wien, 239 p.Google Scholar
Bednarek, A.T. and Hart, D.D., 2005. Modifying dam operations to restore rivers: ecological responses to Tennessee River dam mitigation. Ecol. Appl., 15, 9971008.CrossRefGoogle Scholar
Bogut, I., Čerba, D., Vidaković, J. and Gvozdić, V., 2010. Interactions of weed-bed invertebrates and Ceratophyllum demersum L. stands in a floodplain lake . Biologia, 65, 113121.CrossRefGoogle Scholar
Bowden, B., Glime, J.M. and Riis, T., 2006. Macrophytes and bryophytes. In: Hauer, F.R. and Lamberti, G.A. (eds.), Methods in Stream Ecology, Elsevier, London, 381414.Google Scholar
Breitig, G. and von Tümpling, W., 1982. Ausgewaehlte Methoden der Wasseruntersuchung, Band II. Biologische, Mikrobiologische und Toxikologische Methoden, VEB Gustav Fischer Verlag, Jena, 579 p.Google Scholar
Burkholder, J.M. and Sheath, R.G., 1984. The seasonal distribution, abundance and diversity of desmids (Chlorophyta) in a softwater, north temperate stream. J. Phycol., 20, 159172.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N., 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 192 p.
Collier, K.J., 1993. Flow preferences of larval Chironomidae (Diptera) inTongariro River, New Zealand. N. Z. J. Mar. Freshw. Res., 27, 219226.CrossRefGoogle Scholar
Descy, J.P., Everbecq, E., Gosselain, V, Viroux, L. and Smitz, J.S., 2003. Modelling the impact of benthic filter-feeders on the composition and biomass of river plankton. Freshw. Biol., 48, 404417.CrossRefGoogle Scholar
Donner, P.J., 1972. Die Rädertierbestände submerser Moose und weiterer Merotope im Bereich der Stauraüme der Donau an der Deutch-Österreichischen Landesgrenze. Arch. Hydrobiol. Suppl., 44, 49114.Google Scholar
Duggan, I.C., 2001. The ecology of periphytic rotifers. Hydrobiologia, 446/447, 139148.CrossRefGoogle Scholar
Dumnicka, E., Galas, J. and Koperski, P., 2007. Benthic invertebrates in Karst Springs: does substratum or location define communities? Int. J. Lim., 92, 452464.Google Scholar
Einsle, U., 1993. Crustacea, Copepoda, Calanoida und Cyclopoida, Gustav Fischer Verlag, Berlin, 209 p.Google Scholar
Fenchel, T.M., 1978. The ecology of micro- and meiobenthos. Annu. Rev. Ecol. Syst., 9, 99121.CrossRefGoogle Scholar
Foissner, W. and Berger, H., 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol., 35, 375482.Google Scholar
Glime, J.M., 2007. Bryophyte Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu/.
Glöer, P., 2002. Die Süsswassergastropoden Nord-und Mitteleuropas. In: Bestimmungsschlüssel, Lebensweise, Verbreitung, ConchBooks, Hackenheim, 326 p.Google Scholar
Habdija, I., Primc-Habdija, B., Matoničkin, R., Kučinić, M., Radanović, I., Miliša, M. and Mihaljević, Z., 2004. Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in karst running water. Biologia, 59, 577593.Google Scholar
Hakenkamp, C.C. and Morin, A., 2000. The importance of meiofauna to lotic ecosystem  functioning. Freshw. Biol., 43, 165175.CrossRefGoogle Scholar
Höll, K., 1986. Wasser Untersuchung, Beurteilung, Aufbereitung, Chemie, Bakteriologie, Virologie, Biologie (7th edn), Walter de Gruyter Verlag, Berlin, 393 p.Google Scholar
John, D.M., Whitton, B.A. and Brook, A.J., 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae, Cambridge University Press, New York, 714 p.Google Scholar
Keithan, E.D. and Lowe, R.L., 1985. Primary productivity and spatial structure of phytolithic growth in streams in the Great Smoky Mountains National Park, Tennessee. Hydrobiologia, 123, 5967.CrossRefGoogle Scholar
Knapp, J.M. and Lowe, R.L., 2009. Spatial distribution of epiphytic diatoms on lotic bryophytes. Southeast. Nat., 8, 305316.CrossRefGoogle Scholar
Komárek, J. and Anagnostidis, K., 1999. Süßwasserflora von Mitteleuropa: Band 19/1: Cyanoprokaryota 1. Teil: Chroococcales, Gustav Fischer Verlag, Stuttgart, 548 p.Google Scholar
Komárek, J. and Anagnostidis, K., 2005. Süßwasserflora von Mitteleuropa: Band 19/2: Cyanoprokaryota 2. Teil: Oscillatoriales, Gustav Fischer Verlag, Stuttgart, 759 p.Google Scholar
Koste, W., 1978. Die Rädertiere Mitteleuropas, Gebrüder Borntraeger. Berlin, Stuttgart, 673 p.Google Scholar
Kralj, K., Plenković-Moraj, A., Gligora, M., Primc-Habdija, B. and Sipos, L., 2006. Structure of periphytic community on artificial substrata: influence of depth, slide orientation and colonization time in karstic Lake Visovačko, Croatia. Hydrobiologia, 560, 249258.CrossRefGoogle Scholar
Krammer, K. and Lange-Bertalot, H., 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasser flora von Mitteleuropa, Band 2/1, Gustav Fischer Verlag, Stuttgart, New York, 876 p.Google Scholar
Krammer, K. and Lange-Bertalo, H., 1991. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa, Band 2/4, Gustav Fischer Verlag, Stuttgart, Jena, 437 p.Google Scholar
Krno, I., Šporka, F., Štefková, E., Tirjaková, E., Bitušík, P., Bulánková, E., Lukáš, J., Illéšová, D., Derka, T., Tomajka, J. and Černý, J., 2006. Ecological study of a high-mountain stream ecosystem (Hincov potok, High Tatra Mountains, Slovakia). Acta Soc. Zool. Bohem., 69, 299316.Google Scholar
Kuczyńska-Kippen, N., 2005. On body size and habitat selection in rotifers in a macrophyte-dominatedlake Budzyńskie, Poland. Aquat. Ecol., 39, 447454.Google Scholar
Linhart, J., Fiurášková, M. and Uvira, V., 2002. Moss- and mineral substrata-dwelling meiobenthos in two different low-order streams. Arch. Hydrobiol., 154, 543560.CrossRefGoogle Scholar
Linhartová, Š., Uvíra, V. and Linhart, J., 2005. Stream meiobenthos and flow velocity – do mossy and mineral substrata differ? Verh . Int. Verein. Limnol., 29, 10691071.Google Scholar
Madaliński, K., 1961. Moss dwelling rotifers of Tatra streams. Pol. Arch. Hydrobiol., 9, 243263.Google Scholar
Malard, F., Turquin, M.J. and Magniez, G., 1997. Filter effect of karstic spring ecotones on the population structure of the hypogean amphipod Niphargus virei. In: Gilbert, J., Mathieu, J. and Fournier, F. (eds.), Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options, Cambridge University Press, Cambridge, 4050.Google Scholar
Margaritora, F., 1983. Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne 22, Consiglio Nazionale delle Ricerche, Roma, 167 p.Google Scholar
Matoničkin Kepčija, R., Habdija, I., Primc-Habdija, B. and Miliša, M., 2006. Simuliid silk pads enhance tufa deposition. Arch. Hydrobiol., 166, 387409.CrossRefGoogle Scholar
Miliša, M., Habdija, I., Primc-Habdija, B., Radanović, I. and Matoničkin Kepčija, R., 2006a. The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia, 553, 231243.CrossRefGoogle Scholar
Miliša, M., Matoničkin Kepčija, R., Radanović, I., Ostojić, A. and Habdija, I., 2006b. The impact of aquatic macrophyte (Salix sp. and Cladium mariscus (L.) Pohl.) removal on habitat conditions and macroinvertebrates of tufa barriers (Plitvice Lakes, Croatia). Hydrobiologia, 573, 183197.CrossRefGoogle Scholar
Miliša, M., Živković, V. and Habdija, I., 2010. Destructive effect of quarry effluent on life in a mountain stream. Biologia, 65, 520526.CrossRefGoogle Scholar
Moog, O., 2002. Fauna Aquatica Austriaca. Edition 2002. Wasserwirtschaftskataster Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, http://www.wassernet.at.Google Scholar
Nilsson, A., 1996. Aquatic Insects of North Europe 1, Apollo Books, Stenstrup, 274 p.Google Scholar
Nilsson, A., 1997. Aquatic Insects of North Europe 2, Apollo Books, Stenstrup, 440 p.Google Scholar
Nusch, E.A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol., 14, 1436.Google Scholar
Ogden, C.G. and Hedley, R.H., 1980. An Atlas of Freshwater Testate Amoebae, BAS Printers Limited, Over Wallop, Hamoshire, 222 p.Google Scholar
Page, F.C. and Siemensma, F.J., 1991. Nackte Rhizopoda und Heliozoea, Gustav Fischer Verlag, Stuttgart, New York, 297 p.Google Scholar
Palmer, M.A., 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J. N. Am. Benthol. Soc., 9, 1725.CrossRefGoogle Scholar
Patrick, R. and Reimer, C.W., 1966. The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 1-Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Monogr. Acad. Nat. Sci. Phila., 13, 688.Google Scholar
Patrick, R. and Reimer, C.W., 1975. The diatoms of the United States, exclusive of Alaska and Hawaii, Volume 2, Part 1-Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemaceae. Monogr. Acad. Nat. Sci. Phila., 13, 213.Google Scholar
Radoman, P., 1983. Hydrobioidea: A Superfamily of Prosobranchia (Gastropoda). I. Systematics. Serbian Academy of Sciences and Arts, Monographs, Volume DXLVII, Department of Sciences, No 57, Sebian Academy of Sciences, Belgrade, 256 p.Google Scholar
Reiss, J. and Schmid-Araya, J.M., 2008. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshw. Biol., 53, 652668.CrossRefGoogle Scholar
Ricci, C.N., 1987. Ecology of bdelloids: how to be successful. Hydrobiologia, 47, 117127.CrossRefGoogle Scholar
Rundle, S.D., Robertson, A.L. and Schmid-Araya, J.M. (eds.), 2002. Freshwater Meiofauna: Biology and Ecology, Backhuys Publisher, Leiden, 369 p.Google Scholar
Sandlund, O.T., 1982. The drift of zooplankton and microzoobenthos in the river Strandaelva, western Norway. Hydrobiologia, 94, 3348.CrossRefGoogle Scholar
Schmedtje, U., 1995. Ökologische Grundlagen für die Beurteilung von Ausleitungsstrecken – Beziehungen zwischen der sohlnahen Strömung, dem Gewässerbett und dem Makrozoobenthos in Fließgewässern. Bayerisches Landesamt für Wasserwirtschaft (Hrsg.), Schriftenreihe, Heft 25, 158 p.
Sertić Perić, M., Miliša, M., Primc-Habdija, B. and Habdija, I., 2011. Seasonal and fine-scale spatial patterns of drift and seston in a tufa-depositing barrage hydrosystem. Fund. Appl. Limnol., 178, 131145.CrossRefGoogle Scholar
Sleight, M.A., Baldock, B.M. and Baker, H., 1992. Protozoan communities in chalk streams. Hydrobiologia, 248, 5364.CrossRefGoogle Scholar
Smith, F. and Brown, A.V., 2006. Effects of flow on meiofauna colonization in artificial streams and reference sites within the Illinois River, Arkansas. Hydrobiologia, 571, 169180.CrossRefGoogle Scholar
Soininen, J., 2004. Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquat. Ecol., 38, 495501.CrossRefGoogle Scholar
Sørensen, T., 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. Kgl. Danske Videnskab. Selsk., 5, 134.Google Scholar
Špoljar, M., Dražina, T., Habdija, I., Meseljević, M. and Grčić, Z., 2011. Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Int. Rev. Hydrobiol., 96, 175190.CrossRefGoogle Scholar
Špoljar, M., Habdija, I. and Primc-Habdija, B., 2007a. Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia, 579, 199209.CrossRefGoogle Scholar
Špoljar, M., Primc-Habdija, B. and Habdija, I., 2007b. The influence of the lotic and lentic stretches on the zooseston flux through the Plitvice Lakes (Croatia). Ann. Limnol. - Int. J. Lim., 43, 2940.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar-Bronić, I. and Sliepčević, A., 1985. Calcite deposition processes in karst waters with special emphasis on the Plitvice lakes, Yugoslavia. Carsus Jugosl., 11, 101204.Google Scholar
Stanley, E.H., Short, R.A., Harrison, J.W., Hall, R. and Wiedenfeld, R.C., 1990. Variation in nutrient limitation of lotic and lentic algal communities in a Texas (USA) river. Hydrobiologia, 206, 6171.CrossRefGoogle Scholar
StatSoft, Inc., 2010. Statistica (Data Analysis Software System), v9.1, StatSoft Inc., Tulsa, OK, http://www.statsoft.com.
Stevenson, R.J., Bothwell, M.L., Lowe, R.L. and Thorp, J. H., 1996. Algal Ecology: Freshwater Benthic Ecosystem, Academic Press, San Diego, 753 p.Google Scholar
Stilinović, B. and Plenković-Moraj, A., 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period. Biol., 97, 351358.Google Scholar
Strayer, D.L., May, S.E., Nielsen, P., Wollheim, W. and Hausam, S., 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch. Hydrobiol., 140, 131144.CrossRefGoogle Scholar
Suren, A.M., 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshw. Biol., 26, 399418.CrossRefGoogle Scholar
Suren, A.M., 1992. Meiofaunal communities associated with bryophytes and gravels in shaded and unshaded alpine streams in New Zealand. N. Z. J. Mar. Freshwat. Res., 26, 115125.CrossRefGoogle Scholar
Suren, A., 1993. Bryophytes and associated invertebrates in first-order alpine streams of Arthur's Pass, New Zealand. N. Z. J. Mar. Freshwat. Res., 27, 479494.CrossRefGoogle Scholar
Wallace, R.L. and Ricci, C., 2002. Rotifera. In: Rundle, S.D., Robertson, A.L. and Schmid-Araya, J.M. (eds.), Freshwater Meiofauna: Biology and Ecology, Backhuyus Publishers, Leiden, 1545.Google Scholar
Waringer, J. and Graf, W., 1997. Atlas der Österreichischen Köcherfliegenlarven unter Einschluß angrenzender Gebiete, Facultas Universitätsverlag, Wien, 286 p.Google Scholar
Wilhartitz, I.C., Kirschner, A.K., Stadler, H., Herndl, G.J., Dietzel, M., Latal, C., Mach, R.L. and Farnleitner, A.H., 2009. Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. FEMS Microbiol Ecol., 68, 28799.CrossRefGoogle ScholarPubMed
Zabelina, M.M., Kiselev, I.A., Proškina, A.I. and Šešukova, V.S., 1951. Opredelitelj presnovodnih vodoroslei SSSR. In: Diatomovie vodorosli, Gosudarstvenoe izdateljstvo Sovjetskaja nauka, Moskva, 619 p.Google Scholar
Zimmermann-Timm, H., Holst, H. and Kausch, H., 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia, 593, 4958.CrossRefGoogle Scholar
Zwick, P., 2004. Key to theWest Palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnologica, 34, 315348.CrossRefGoogle Scholar
Supplementary material: PDF

OLM - limn110003 - 48(1) 2012 p.125 - Bryophyte communities and seston...

Appendix

Download OLM - limn110003 - 48(1) 2012 p.125 - Bryophyte communities and seston...(PDF)
PDF 82.9 KB