Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T19:18:58.108Z Has data issue: false hasContentIssue false

Aquatic habitat use by amphibians with specific reference to Rana temporaria at high elevations (Retezat Mountains National Park, Romania)

Published online by Cambridge University Press:  29 October 2012

Dan Cogălniceanu
Affiliation:
University Ovidius Constanţa, Faculty of Natural Sciences, Aleea Universităţii, No. 1, 900470, Constanţa, Romania
Raluca Băncilă*
Affiliation:
University Ovidius Constanţa, Faculty of Natural Sciences, Aleea Universităţii, No. 1, 900470, Constanţa, Romania “Emil Racoviţă” Institute of Speleology of the Romanian Academy, 13 Septembrie Road, No. 13, 050711, Bucharest, Romania
Rodica Plăiaşu
Affiliation:
University Ovidius Constanţa, Faculty of Natural Sciences, Aleea Universităţii, No. 1, 900470, Constanţa, Romania “Emil Racoviţă” Institute of Speleology of the Romanian Academy, 13 Septembrie Road, No. 13, 050711, Bucharest, Romania
Ciprian Samoilă
Affiliation:
University Ovidius Constanţa, Faculty of Natural Sciences, Aleea Universităţii, No. 1, 900470, Constanţa, Romania
Tibor Hartel
Affiliation:
University Ovidius Constanţa, Faculty of Natural Sciences, Aleea Universităţii, No. 1, 900470, Constanţa, Romania Institute of Ecology, Faculty of Sustainability, Leuphana University Lüneburg, 21335, Lüneburg, Germany
*
*Corresponding author: [email protected]
Get access

Abstract

Alpine areas are extreme habitats that require special adaptations and involve major trade-offs in terms of life history. Amphibians have the ability to adapt both their life history and developmental traits to alpine environments. Temperate amphibians depend on the quality and availability of aquatic habitats for reproduction. We explored the aquatic habitat used by amphibians in the alpine area of Retezat Mountains, Southern Carpathians, Romania. We surveyed 40 aquatic habitats in a 380 ha area delimited by mountain crests and drained by a steep valley. Each aquatic habitat was characterized using 10 environmental variables. Only three amphibian species occur at elevations above 1900 m, the most widespread being the Common Frog Rana temporaria. The Common Frog showed preference for breeding aquatic habitats, the variables of importance being altitude, solar radiation, water chemistry and grazing. Higher elevation and lower solar radiation decreased frog occurrence, while the impact of grazing favored the use of water bodies. Acidification is eminent in the area with pH dropping below 5 in 20% of the water bodies. Overall, amphibian occurrence in alpine area can be partly explained by the characteristics of aquatic habitats.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babik, W. and Rafiński, J., 2001. Amphibian breeding site characteristics in the Western Carpathians, Poland. Herpetol. J., 11, 4151.Google Scholar
Beebee, T.J.C. and Griffiths, R.A., 2005. The amphibian decline crisis: a watershed for conservation biology? Biol. Conserv., 25, 271285.CrossRefGoogle Scholar
Birks, H.J.B., Jones, V.J. and Rose, N.L., 2004. Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments – synthesis and general conclusions. J. Paleolimnol., 31, 531546.CrossRefGoogle Scholar
Bosch, J. and Martinez-Solano, I., 2003. Factors influencing occupancy of breeding ponds in a montane amphibian assemblage. J. Herpetol., 37, 410413.CrossRefGoogle Scholar
Burnham, K.P. and Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach (2nd edn.), Springer-Verlag, New York, 485 p.Google Scholar
Burton, E.C., Gray, M.J., Schmutzer, A.C. and Miller, D.L., 2009. Differential responses of postmetamorphic amphibians to cattle grazing in wetlands. J. Wildlife Manage., 73, 269277.CrossRefGoogle Scholar
Ćirović, R., Vukov, T.D., Radović, D., Džukić, G. and Kalezić, M.L., 2008. Distribution patterns and environmental determinants of European newts in the Montenegrin karst area. Biologia, 63, 745752.CrossRefGoogle Scholar
Cogălniceanu, D. and Hartel, T., 2005. Frost induced mortality in a high altitude population of Rana temporaria. Froglog, 72, 34.Google Scholar
Cogălniceanu, D., Ghira, I. and Ardeleanu, A., 2001. Spatial distribution of herpetofauna in the Retezat Mountains National Park, Romania. Biota, 2, 916.Google Scholar
Cogălniceanu, D., Hartel, T. and Plăiaşu, R., 2006. Establishing an amphibian monitoring program in two protected area of Romania. In: Vences, M., Köhler, J., Ziegler, T. and Böhme, W. (eds.), Herpetologia Bonnensis II, Proceedings of the 13th Congress of the Societas Europea Herpetologica. SEH, Bonn, 3134.Google Scholar
Curtis, C., Botev, I., Camarero, L., Catalan, J., Cogălniceanu, D., Hughes, M., Kernan, M., Kopacek, J., Korhola, A., Mosello, R., Psenner, R., Stuchlik, E., Veronesi, M. and Wright, R., 2005. Acidification in European mountain lake districts: a regional assessment of critical load exceedance. Aquat. Sci., 67, 237251.CrossRefGoogle Scholar
Decei, P., 1981. Lacuri de munte. Drumeţie şi pescuit. [Mountain Lakes. Trekking and Fishing]. Editura Sport-Turism, Bucharest, Romania.Google Scholar
Denoël, M. and Joly, P., 2000. Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia, Caudata). Proc. R. Soc. Lond. B, 267, 14811485.CrossRefGoogle Scholar
Elmberg, J. and Lundberg, P., 1991. Intraspecific variation in calling, time allocation and energy reserves in breeding male common frogs Rana temporaria. Ann. Zool. Fenn., 28, 2329.Google Scholar
ESRI, 2009a. An Overview of Spatial Analyst, Environmental Systems Research Institute, Redlands, CA. Available online at: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=An_overview_of_Spatial_Analyst.
ESRI, 2009b. An Overview of the Solar Radiation Tools, Environmental Systems Research Institute, Redlands, CA. Available online at: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=An_overview_of_the_Solar_Radiation_tools
Fărcaş, I. and Sorocovschi, V., 1992. The climate of the Retezat Mountains. In: Popovici, I. (ed.), The Retezat National Park, Ecological Studies, West Side Computers, Braşov, 1320.Google Scholar
Fjellheim, A., Raddum, G.G., Vandvik, V., Cogălniceanu, D., Boggero, A., Brancelj, A., Galas, J., Sporka, F., Vidinova, Y., Bitusik, P., Dumnicka, E., Gâldean, N., Kownacki, A., Krno, I., Preda, E., Rîşnoveanu, G. and Stuchlik, E., 2009. Diversity and distribution patterns of benthic invertebrates along alpine gradients. A study of remote European freshwater lakes. Adv. Limnol., 62, 159176.Google Scholar
Fu, P. and Rich, P.M., 2002. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agr., 37, 2535.CrossRefGoogle Scholar
Funk, W.C., Blouin, M.S., Corn, P.S., Maxell, B.A., Pilliod, D.S., Amish, S. and Allendorf, F.W., 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol. Ecol., 14, 483496.CrossRefGoogle ScholarPubMed
Glos, J., Grafe, U.T., Rödel, M.O. and Linsenmair, K.E., 2003. Geographic variation in pH tolerance of two populations of the European common frog, Rana temporaria. Copeia, 3, 650656.CrossRefGoogle Scholar
Grözinger, F., Wertz, A., Thein, J., Feldhaar, H. and Rödel, M.O., 2012. Environmental factors fail to explain oviposition site use in the European common frog. To be published in J. Zool.CrossRefGoogle Scholar
Harrison, S. and Taylor, A.D., 1997. Empirical evidence for metapopulation dynamics. In: Hanski, I. and Gilpin, M.E. (eds.), Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, CA, 2742.CrossRefGoogle Scholar
Jarvis, A., Reuter, H.I., Nelson, A. and Guevara, E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Available online at: http://srtm.csi.cgiar.org
Koining, K.A., Schmidt, R., Sommaruga-Wögrath, S., Tessadri, R. and Psenner, R., 1998. Climate change as the primary cause for pH shifts in a high alpine lake. Water Air Soil Pollut., 104, 167180.CrossRefGoogle Scholar
Kovar, R., Brabec, M., Vita, R. and Bocek, R., 2009. Spring migration distances of some Central European amphibian species. Amphibia-Reptilia, 30, 367378.CrossRefGoogle Scholar
Kuzmin, S., Tuniyev, V.I.B., Beebee, T., Andreone, F., Nyström, P., Anthony, B., Schmidt, B., Ogrodowczyk, A., Ogielska, M., Bosch, J., Miaud, C., Loman, J., Cogălniceanu, D., Kovács, T. and Kiss, I., 2009. Rana temporaria. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2
Lindgren, B. and Laurila, A., 2010. Are high-latitude individuals superior competitors? A test with Rana temporaria tadpoles. Evol. Ecol., 24, 115131.CrossRefGoogle Scholar
Loman, J., 1999. Early metamorphosis in common frog Rana temporaria at risk of drying: an experimental demonstration. Amphibia-Reptilia, 20, 421430.CrossRefGoogle Scholar
Mazerolle, M.J., 2009. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c), version 1.06.
Merilä, J., Laurila, A., Timenes, L.A., Rasanen, K. and Pahkala, M., 2000. Plasticity in age and size at metamorphosis in Rana temporaria – comparison of high and low latitude populations. Ecography, 23, 457465.CrossRefGoogle Scholar
Miaud, C. and Merilä, J., 2001. Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians . Biota, 2, 3150.Google Scholar
Miaud, C., Guyetant, R. and Elmberg, J., 1999. Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps. J. Zool., 249, 6173.CrossRefGoogle Scholar
Miaud, C., Guyetant, R. and Faber, H., 2000. Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae) at high altitude and a review of life-history trait variation throughout its range. Herpetologica, 56, 135144.Google Scholar
Pişotă, I., 1971. Lacurile glaciare din Carpaţii Meridionali. Studiu hidrologic. [Glacial Lakes from the Southern Carpathians. Hydrological Study]. Editura Academiei, Bucharest, Romania.Google Scholar
Plăiaşu, R., Băncilă, R.I., Samoilă, C. and Cogălniceanu, D., 2010. Factors influencing the breeding habitat use by amphibians in the alpine area of the Retezat National Park (Romania). Trav. Mus. Nat. d'Hist. Nat. “Gr. Antipa”, 53, 469478.Google Scholar
Psenner, R. and Schmidt, R., 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 356, 781783.CrossRefGoogle Scholar
Pyke, C.R. and Marty, R.J., 2005. Cattle grazing mediates climate change impacts on ephemeral wetlands. Conserv. Biol., 19, 16191625.CrossRefGoogle Scholar
R Development Core Team, 2009. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Vienna. Available online at: http://www.R-project.org
Schmutzer, A.C., Gray, M.J., Burton, E.C. and Miller, D.L., 2008. Impacts of cattle on amphibian larvae and the aquatic environment. Freshwater Biol., 53, 26132625.CrossRefGoogle Scholar
Schreiber, W. and Sorocovschi, V., 1992. The Retezat Mountains. Physico-geographic data. In: Popovici, I. (ed.), The Retezat National Park. Ecological Studies, West Side Computers, Braşov, 812.Google Scholar
Sommer, S. and Pearman, P.B., 2003. Quantitative genetic analysis of larval life history traits in two alpine populations of Rana temporaria . Genetica, 118, 110.CrossRefGoogle ScholarPubMed
Straskrabova, V., Cogălniceanu, D., Nedoma, J., Parpală, L., Postolache, C., Tudorancea, C., Vădineanu, A., Vâlcu, C. and Zinevici, V., 2006. Bacteria and pelagic food webs in pristine mountain lakes (Retezat, Romania). Transylv. Rev. Syst. Ecol. Res., 3, 110.Google Scholar
Tattersall, G.J. and Ultsch, G.R., 2008. Physiological ecology of aquatic overwintering in Ranid frogs. Biol. Rev., 83, 119140.CrossRefGoogle ScholarPubMed
Urdea, P., 2000. Munţii Retezat. Studiu Geomorfologic. [The Retezat Mountains. Geomorphological Study]. Editura Academiei Române, Bucharest, Romania.
Van Buskirk, J., 2005. Local and landscape influence on amphibian occurrence and abundance. Ecology, 86, 19361947.CrossRefGoogle Scholar
Veith, M., Vences, M., Vieites, D.R., Nieto-Roman, S. and Palanca, A., 2002. Genetic differentiation and population structure within the Spanish common frogs (Rana temporaria complex: Ranidae, Amphibia). Folia Zool., 51, 307318.Google Scholar
Vences, M., Grossenbacher, K., Puente, M., Palanca, A. and Vieites, D.R., 2003. The Cambalès fairy tale: elevational limits of Rana temporaria (Amphibia: Ranidae) and other European amphibians revisited. Folia Zool., 52, 189202.Google Scholar
Vieites, D.R., Nieto-Román, S., Barluenga, M., Palanca, A., Vences, M. and Meyer, A., 2004. Post-mating clutch piracy in an amphibian. Nature, 431, 305308.CrossRefGoogle Scholar
Wolfe, A.P., Baron, J.S. and Cornett, R.J., 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol., 25, 17.CrossRefGoogle Scholar