Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T15:28:12.078Z Has data issue: false hasContentIssue false

Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin

Published online by Cambridge University Press:  10 February 2014

E. Boros*
Affiliation:
Balaton Limnological Institute, Centre for Ecological Research of the Hungarian Academy of Sciences, P.O. Box 35, H-8237 Tihany, Hungary
Zs. Horváth
Affiliation:
WasserCluster Lunz, Dr. Carl Kupelwieser Promenade 5, AT-3293 Lunz am See, Austria
G. Wolfram
Affiliation:
DWS Hydro-Ökologie GmbH, Zentagasse 47/5, -1050 Wien, Austria
L. Vörös
Affiliation:
Balaton Limnological Institute, Centre for Ecological Research of the Hungarian Academy of Sciences, P.O. Box 35, H-8237 Tihany, Hungary
*
*Corresponding author: [email protected]
Get access

Abstract

We investigated the chemical characteristics of the astatic soda pans in the Carpathian Basin based on comprehensive new and archive data. Analysed parameters were salinity and ionic composition. The most frequent type of soda waters was the basic alkaline type (Na-HCO3) that represented more than half of the natural soda pans. Besides 11 subtypes occurred. The second and third most frequent types were the chloride (13%) and sulphate subtypes (11%), with the secondary dominance of these anions. The other subtypes meant <4% of the pans. Magnesium sometimes occurred as a secondary dominant cation beside sodium. Until now, this subtype of soda waters has not been published in any part of the world, because of the general rule of soda lake formation (depending on low levels of magnesium and calcium). We found a regionally constant correction factor [Salinity (mg.L−1)=0.8×El.Cond. (μS.cm−1)] for confidentially estimating salinity from electrical conductivity in these habitats. Salinity varied between sub- (0.5–3 g.L−1) and hypersaline (>50 g.L−1) ranges, with its mean value (∼4 g.L−1) in the hyposaline range (3–20 g.L−1). The basic alkaline type had random geographical distribution, while the other subtypes were restricted to certain regions of the Basin. The high number of subtypes reflects the high chemical diversity of alkaline soda pans in the relatively small territory of the Carpathian Basin.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boros, E., 1999. Ecological state of sodic water bodies in Hungary (in Hungarian with English summary). Acta Biol. Debr. Oecol. Hung., 9, 1380.Google Scholar
Boros, E. and Vörös, L., 2010. Salinity and ion composition of the Hungarian sodic (soda) pans. (in Hungarian with English Abstract). Acta Biol. Debr. Oecol. Hung., 22, 3751.Google Scholar
Boros, E., Nagy, T., Pigniczki, Cs., Kotymán, L., Balogh, K.V. and Vörös, L., 2008. The effect of aquatic birds on the nutrient load and water quality of soda pans in Hungary. Acta Zool. Acad. Sci. Hung., 54, 207224.Google Scholar
Borsodi, A.K., Micsinai, A., Rusznyák, A., Vladár, P., Kovács, G., Tóth, E.M. and Márialigeti, K., 2005. Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microb. Ecol., 50, 918.CrossRefGoogle Scholar
Borsodi, A.K., Márialigeti, K., Szabó, G., Palatinszky, M., Pollák, B., Kéki, Z., Kovács, A.L., Schumann, P. and Tóth, E.M., 2008. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int. J. Syst. Evol. Microbiol., 58, 845851.CrossRefGoogle ScholarPubMed
Borsodi, A.K., Pollák, B., Kéki, Z., Rusznyák, A., Kovács, A.L., Sproer, C., Schumann, P., Márialigeti, K. and Tóth, E.M., 2011. Bacillus alkalisediminis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from the sediment of extremely shallow soda ponds. Int. J.  Syst. Evol. Microbiol., 61, 18801886.CrossRefGoogle ScholarPubMed
Dinka, M., Ágoston-Szabó, E., Berczik, Á. and Kutrucz, Gy., 2004. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertő/Neusiedler See. Limnologica, 34, 4856.CrossRefGoogle Scholar
Donászy, E., 1959. Das Leben des Szelider Sees. Akadémiai Kiadó Budapest, 425 p.
Dvihally, Zs.T., 1960. Szikes tóvizek kémiai összetételének évszakos változásai. Hidrológiai Közlöny, 40, 316323.Google Scholar
Eugster, H.P. and Hardie, L.A., 1978. Saline Lakes. In: Lerman, A. (ed.), Lakes; Chemistry, Geology, Physics, Springer-Verlag, New York, NY, 237293.Google Scholar
Freeze, R.A. and Cherry, J.A., 1979. Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, 1529.Google Scholar
Grant, W.D., 2006. Alkaline environments and biodiversity. In: Gerday, C. and Glansdorff, N. (eds.), Extremophilies, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford, UK, http://www.eolss.net.Google Scholar
Hammer, U.T., 1986. Saline Lake Ecosystems of the World, Dr W. Junk Publishers, The Hague, 616 p.Google Scholar
Horváth, Zs., Vad, Cs.F., Vörös, L. and Boros, E., 2013a. Distribution and conservation status of fairy shrimps (Crustacea: Anostraca) in the astatic soda pans of the Carpathian basin: the role of local and spatial factors. J. Limnol., 72, 103116.CrossRefGoogle Scholar
Horváth, Zs., Vad, Cs.F., Vörös, L. and Boros, E., 2013b. The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds. Freshwater Biol., 58, 430440.CrossRefGoogle Scholar
Jambrina, M., Armenteros, I., Corrochano, Á. and Recio, C., 2013. Origin and hydrogeochemistry of a shallow flow-through lake on a Pleistocene piedmont, northern Spanish Meseta. J. Limnol., 72, 361375.CrossRefGoogle Scholar
Kompantseva, E.I., Bryantseva, I., Komova, A.V. and Namsaraev, B.B., 2007. The structure of phototrophic communities of soda lakes of the Southeastern Transbaikal Region. Microbiology, 76, 211219.CrossRefGoogle ScholarPubMed
Krachler, R., Krachler, R., Stojanovic, A., Wielander, B. and Herzig, A., 2009. Effects of pH on aquatic biodegradation processes. Biogeosci. Discuss., 6, 13.CrossRefGoogle Scholar
Löffler, H., 1957. Vergleichende limnologische Untersuchungen an den Gewässern des Seewinkels (Burgenland). Verh. Zool. Bot. Ges. Wien, 97, 2752.Google Scholar
Löffler, H., 1971. Geographische Verteilung und Entstehung von Alkaliseen. Sitz. ber. Öst. Akad. Wiss., Math.-Naturwiss. Kl., Abt. I, 179, 163170.Google Scholar
Löffler, H. (ed.), 1979. Neusiedlersee: The limnology of a shallow lake in Central Europe, Dr. W. Junk Publishers, The Hague-Boston-London, 507 p.Google Scholar
Maucha, R., 1932. Hydrochemische Methoden in der Limnologie. Die Binnengewasser, Band 12, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 173 p.Google Scholar
Megyeri, J., 1979. A szikes tavak általános tulajdonságai. In: Tóth, K. (ed.), Nemzeti Park a Kiskunságban, Natura, Budapest, 155164.Google Scholar
Metz, H. and Forró, L., 1989. Contribution to the chemistry and crustacean zooplankton of sodic waters: the Seewinkel pans revisited. BFB-Bericht 70, Biologische Station Neusiedler See, Illmitz, 73 p.
Oberleitner, I., Wolfram, G. and Achatz-Blab, A. (eds.), 2006. Salz Lebensräume in Österreich, Umweltbundesamt, Dessau, 216 p.Google Scholar
Petrović, G., 1981. On the chemistry of some salt lakes and ponds in Yugoslavia. Hydrobiologia, 81, 195200.CrossRefGoogle Scholar
Schmidt, A., 2003. Kiskunsági szikes tavak (KNP II) összehasonlító vízkémiai vizsgálata. Természetvédelmi Közlemények, 10, 153162.Google Scholar
Szépfalusi, J., 1971. Chemische Untersuchungen der Sodateiche im südlichen Teil der Großen Ungarischen Tiefebene. Math. – Naturw. Kl., Abt. I, 179, 205223.Google Scholar
Várallyay, Gy., 1993. Soil data bases for sustainable land use-Hungarian case study. In: Greenland, D.J. and Szabolcs, I. (eds.), Soil Resilience and Sustainable Land Use, CAB International, Wallingford, 469495.Google Scholar
Vörös, L. and Boros, E., 2010. Nodularia willei Gardn. tömegprodukció: a planktonikus és bentonikus elsődleges termelés peremfeltételei egy kiskunsági szikes tóban (Kelemen-szék). Acta Biol. Debr. Oecol. Hung., 22, 139152.Google Scholar
Warren, J.K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Chapter 2: Depositional Chemistry and Hydrology, Springer-Verlag, Berlin, Heidelberg, 59136.CrossRefGoogle Scholar
Williams, W.D., 1998. Guidelines of lake management. Volume 6. Management of Saline Waters. International Lake Environment Committee – United Nations Environment Programme, 108 p.
Wolfram, G., Schagerl, M., Donabaum, K. and Riedler, P., 2004. Untersuchung der räumlichen und zeitlichen Verteilung benthischer Evertebraten in den Salzlacken des Seewinkels und ihre Rolle als Nahrungsgrundlage für Wasservögel. Teil I: Abiotische Charakterisierung. Scientific report for the National Park Neusiedler See – Seewinkel, Wien, 107 p.