Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T13:35:12.142Z Has data issue: false hasContentIssue false

The response of phytoplankton, zooplankton and macrozoobenthos communities to change in the water supply from surface to groundwater in aquaculture ponds

Published online by Cambridge University Press:  20 March 2014

Zorka Dulić*
Affiliation:
Faculty of Agriculture, University of Belgrade, 11 080 Belgrade, Serbia
Zoran Marković
Affiliation:
Faculty of Agriculture, University of Belgrade, 11 080 Belgrade, Serbia
Miroslav Živić
Affiliation:
Faculty of Biology, University of Belgrade, 11 000 Belgrade, Serbia
Miloš Ćirić
Affiliation:
Institute for Chemistry, Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
Marko Stanković
Affiliation:
Faculty of Agriculture, University of Belgrade, 11 080 Belgrade, Serbia
Gordana Subakov-Simić
Affiliation:
Faculty of Biology, University of Belgrade, 11 000 Belgrade, Serbia
Ivana Živić
Affiliation:
Faculty of Biology, University of Belgrade, 11 000 Belgrade, Serbia
*
*Corresponding author: [email protected]
Get access

Abstract

Investigating forces driving the structure of aquatic communities has long been an important issue in ecology. In the present study, we focused on the effects of changed water supply for aquaculture ponds on phytoplankton, zooplankton and macrozoobenthos communities during two seasons of rearing common carp. We compared these communities between two types of inflow water: surface sources of water – a reservoir pond, two open wells and a small stream and groundwater – deep tube well. Significant changes were observed in environmental variables after the introduction of the groundwater source: oxygen concentration and water hardness decreased, while conductivity, phosphorus and un-ionized ammonia increased. Results revealed that all investigated groups, except Mollusca (macrozoobenthos), decreased in species richness, abundance and biomass due to changed water chemistry, but differed in the level of susceptibility. Rotifera and Cladocera were the most affected showing a sharp decline in density and number of species since 66% of species disappeared from the ponds. The abundance of Copepoda was relatively high although significantly lower under new conditions, with adults being more tolerant to changed inflow water than nauplii larvae. Phytoplankton had the highest potential to replace previous species with newcomers more adapted to changed water chemistry, providing 36 immigrant species, whereas 49 became extinct. Although mainly influenced by fish predation, Chironomidae (macrozoobenthos) were undoubtedly affected by changed water chemistry. These results suggest profound changes in three key ecological groups produced by significant changes of important environmental variables and water quality after the shift from surface to groundwater supply.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, N., Nogueira, A. and Goncalves, F., 2009. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann. Limnol. - Int. J. Lim., 45, 237245.CrossRefGoogle Scholar
Adámek, Z., Sukop, I., Rendón, P.M. and Kouřil, J., 2003. Food competition between 2+tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J. Appl. Ichthyol., 19, 165169.CrossRefGoogle Scholar
Alabaster, J.S. and Lloyd, R., 1980. Water Quality Criteria for Freshwater Fish, Butter-Worths, London, 297 p.Google Scholar
APHA 1998. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC.
Bailey, S.A., Duggan, I.C., Van Overdijk, C.D.A., Johengen, T.H., Reid, D.F. and Macisaac, H.J., 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwat. Biol., 49, 286295.CrossRefGoogle Scholar
Biswas, J.K., Rana, S., Bhakta, J.N. and Jana, B.B., 2009. Bioturbation potential of Chironomid larvae for the sediment–water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol. Eng., 35, 14441453.CrossRefGoogle Scholar
Blinn, D.W. and Bailey, P.C.E., 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia, 466, 231244.CrossRefGoogle Scholar
Boronat, L., Miracle, M.R. and Armengol, X., 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia, 442, 7588.CrossRefGoogle Scholar
Brock, M.A., Nielsen, D.L. and Crossie, K., 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwat. Biol., 50, 13761390.CrossRefGoogle Scholar
Cáceres, C. and Soluk, D., 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402408.CrossRefGoogle ScholarPubMed
Céréghino, R., Ruggiero, A., Marty, P. and Angélibert, S., 2008. Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Hydrobiologia, 597, 4351.CrossRefGoogle Scholar
Chittapun, S., Pholpunthin, P. and Segers, H., 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia, 546, 281289.CrossRefGoogle Scholar
Cho, W.-S., Park, Y.-S., Park, H.-K., Kong, H.Y. and Chon, T.-S., 2011. Ecological informatics approach to screening of integrity metrics based on benthic macroinvertebrates in streams. Ann. Limnol. - Int. J. Lim., 47, 5162.CrossRefGoogle Scholar
De Meester, L., Gomez, A., Okamura, B. and Schwenk, K., 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol., 23, 121135.CrossRefGoogle Scholar
Dolédec, S. and Chessel, D., 1994. Co-inertia analysis: an alternative method for studying species–environment relationships. Freshwat. Biol., 31, 277294.CrossRefGoogle Scholar
Flosner, D., 1972. Krebstiere, Crustacea, Kiemen und Blattfußer, Branchiopoda, Fischlause, Branchiura. Die tierwelt deutschlands, VEB Gustav Fischer Verlag, Jena, 501 p.Google Scholar
Fritz, S.C., Cumming, B.F., Gasse, F. and Laird, K.R., 1999. Diatoms as indicators of hydrologic and climatic changes in saline lakes. In: Stoermer, E.F. and Smol, J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, UK, 4172.CrossRefGoogle Scholar
Glöer, P. and Meier-Brook, C., 2003. Süswassermollusken, Deutscher Jugenbund für Naturbeoachung, Hamburg, 134 p.Google Scholar
Green, J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia, 267, 249256.CrossRefGoogle Scholar
Gyllström, M. and Hansson, L.A., 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci., 66, 274295.CrossRefGoogle Scholar
Hammer, U.T., Shamess, J. and Haynes, R., 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia, 105, 126.CrossRefGoogle Scholar
Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K., McMahon, A., Meredith, C. and Swadling, K., 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia, 210, 105144.CrossRefGoogle Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and bentic microalgae. J. Phycol., 35, 403424.CrossRefGoogle Scholar
Horvath, L., Tamas, G. and Seagrave, C., 2002. Carp and Pond Fish Culture, Blackwell Science, Oxford, 169 p.CrossRefGoogle Scholar
Huber-Pestalozzi, G., Komarek, J. and Fott, B., 1983. Phytoplankton des süβwasser. Chlorophyceae, ordnung: Chlorococcales, E. Schweizerbartsche Verlagsbuchhandung, Stuttgart, 1044 p.Google Scholar
Hull, A., 1997. The pond life project: a model for conservation and sustainability. In: Boothby, J. (ed.), British Pond Landscape. Proceedings from the UK Conference of the Pond Life Project, Liverpool, 101109.Google Scholar
Hynes, H.B.N., 1966. The Biology of Polluted Water, Liverpool University Press, Liverpool, 202 p.Google Scholar
Jeffries, M.J., 2002. Evidence for individualistic species assembly creating convergent predator: prey ratios among pond invertebrate communities. J. Anim. Ecol., 71, 173184.CrossRefGoogle Scholar
Jenkins, D.G. and Buikema, A.L., 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol. Monogr., 68, 421443.CrossRefGoogle Scholar
Jurkiewicz-Karnkowska, E., 2008. Aquatic mollusk communities in riparian sites of different size, hydrological connectivity and succession stage. Pol. J. Ecol., 56, 99118.Google Scholar
Komárek, J. and Anagnostidis, K., 1998. Süβwasserflora von mitteleuropa. Cyanoprokaryota. Chroococcales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 548 p.Google Scholar
Komárek, J. and Anagnostidis, K., 2005. Süβwasserflora von mitteleuropa, Cyanoprokaryota. Oscillatoriales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 759 p.Google Scholar
Koste, W., 1978. Rotatoria. Die Radertiere Mitteleuropas, Überorderung Monogononta, Gerbruder Brontraeger, Berlin, 673 p.Google Scholar
Krammer, J. and Lange-Bertalot, H., 1986. Süβwasserflora von mitteleuropa. Bacillariophyceae. Naviculaceae, Gustav Fischer Verlag, Stuttgart, 876 p.Google Scholar
Krammer, J. and Lange-Bertalot, H., 1988. Süβwasserflora von mitteleuropa. Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae, Gustav Fischer Verlag, Stuttgart, 596 p.Google Scholar
Kuczyńska-Kippen, N. and Joniak, T., 2010. The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. Int. Rev. Hydrobiol., 95, 130141.CrossRefGoogle Scholar
Louette, G. and De Meester, L., 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86, 353359.CrossRefGoogle Scholar
Mayer, J., Dokulil, M.T., Salbrechter, B.M., Posch, T., Pfister, G., Kirschner, A.K.T., Velimirov, B., Steitz, A. and Ulbricht, T., 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia, 342/343, 165174.CrossRefGoogle Scholar
McAleece, N., 1997. Biodiversity Pro. The Natural History Museum, London.
Milstein, A., 1992. Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia, 231, 177186.CrossRefGoogle Scholar
Moller Pillot, H.K.M., 2009. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: Biology and Ecology of the Chironomini, KNNV Publishing, Zeist, 288 p.Google Scholar
Moog, O., 2002. Fauna Aquatica Austriaca. A comprehensive species inventory of Austrian aquatic organisms with ecological notes, Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna.
Morduhai-Boltiviskoi, B.D., 1954. Materialji po srednemu vesu vodnih bespozvonočnih dnepra. Trudi problemnih i tematičeskih sovešcanija zin. Problemy gidrobiologii vnutrennikh vod: Tr. problem. i temat. soveshch. M. Zool. in-t AN SSSR. Vyp., 2, 223241.Google Scholar
Nielsen, D.L., Brock, M.A., Crosslé, K., Harris, K., Healey, M. and Jarosinski, I., 2003. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshwat. Biol., 48, 22142223.CrossRefGoogle Scholar
Nielsen, D.L., Smith, D., Petrie, R., 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwat. Biol., 57, 13061314.CrossRefGoogle Scholar
North, E.W. and Houde, E.D., 2003. Linking ETM physics, zooplankton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Mar. Ecol. Prog. Ser., 260, 219236.CrossRefGoogle Scholar
Pechar, L., 2000. Impact of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fisheries Manage. Ecol., 7, 2331.CrossRefGoogle Scholar
Potužak, J., Huda, J. and Pechar, L., 2007. Changes in fish production effectivity in eutrophic fishponds – impact of zooplankton structure. Aquacult. Int., 15, 201210.CrossRefGoogle Scholar
Rahman, M., Kadowaki, S., Balcombe, S. and Wahab, M., 2010. Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, 303309.CrossRefGoogle Scholar
Remane, A., 1934. Die brackwasserfauna. Verzeichnis der Veröffentlichungen Goldsteins, 36, 3474.Google Scholar
Rettig, J., Schuman, L. and McCloskey, J., 2006. Seasonal patterns of abundance: do zooplankton in small ponds do the same thing every spring-summer? Hydrobiologia, 556, 193207.CrossRefGoogle Scholar
Reynolds, C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 552 p.CrossRefGoogle Scholar
Rozkošny, R., 1980. Klič larev vodneho hmyzu, Ceskoslovenska Akademie Ved, Praha, Czech Republic, 521 p.Google Scholar
Ruggiero, A., Céréghino, R., Figuerola, J., Marty, P. and Angélibert, S., 2008. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. C. R. Biol., 331, 298308.CrossRefGoogle Scholar
Simpson, E.H., 1949. Measurement of diversity. Nature, 163, 688.CrossRefGoogle Scholar
Smayda, T.J., 1978. From phytoplankters to biomass. In: Sournia, A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology 6, UNESCO, Paris, 273279.Google Scholar
Stewart, A.J., 2001. A simple stream monitoring technique based on measurements of semi-conservative properties of water. J. Environ. Manage., 27, 3746.CrossRefGoogle Scholar
Ter Heerdt, G. and Hootsmans, M., 2007. Why biomanipulation can be effective in peaty lakes. Hydrobiologia, 584, 305316.CrossRefGoogle Scholar
Thioulouse, J., Chessel, D., Dole'Dec, S. and Olivier, J.M., 1997. Ade-4: a multivariate analysis and graphical display software. Stat. Comput., 7, 7583.CrossRefGoogle Scholar
Thompson, P.L. and Shurin, J.B., 2012. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. J. Anim. Ecol., 81, 251259.CrossRefGoogle ScholarPubMed
Vallenduuk, H.J. and Moller Pillot, H.K.M., 2007. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: General ecology and Tanypodinae, KNNV Publishing, Zeist, 144 p.Google Scholar
Van Der Vlugt, J.C., Walker, P.A., Does, J. and Raat, A.J.P., 1992. Fisheries management as an additional lake restoration measure: biomanipulation scaling-up problems. Hydrobiologia, 233, 213224.CrossRefGoogle Scholar
Waterkeyn, A., Vanschoenwinkel, B., Vercampt, H. and Grillas, P., 2011. Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnol. Oceanogr., 56, 10081022.CrossRefGoogle Scholar
Wegl, R. 1983. Index für die Limnosaprobitat. Wass. Abwass., 26, 1175.Google Scholar
Wesselingh, F.P., Cadée, G.C. and Renema, W., 1999. Flying high: on the airborne dispersal of aquatic organisms as illustrated by the distribution histories of the gastropod genera Tryonia and Planorbarius. Neth. J. Geosci., 78, 165174.Google Scholar
Williams, P., Biggs, J., Corfield, A., Fox, G., Walker, D. and Whitfield, M., 1997. Designing new ponds for wildlife. Br. Wildl., 8, 137150.Google Scholar
Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. and Sear, D., 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv., 115, 329341.CrossRefGoogle Scholar
Wood, P.J., Greenwood, M.T. and Agnew, M.D., 2003. Pond biodiversity and habitat loss in the UK. Area, 35, 206216.CrossRefGoogle Scholar
Yang, Y.F., Huang, X.F., Liu, J.K. and Jiao, N.Z., 2005. Effects of fish stocking on the zooplankton community structure in a shallow lake in China. Fisheries Manage. Ecol., 12, 8189.CrossRefGoogle Scholar
Zelinka, M. and Marvan, P., 1961. Zur Prazisierung der biologischen Klassifikation der Reinheit flisender Gewasser. Arch. Hydrobiol., 57, 389407.Google Scholar

OLM_limn130086

tables

Download OLM_limn130086(Audio)
Audio 73.8 KB