Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T00:23:31.023Z Has data issue: false hasContentIssue false

Morphometric and biotic variables as potential predictors of Ludwigia sedoides (Humb. & Bonpl.) Hara in a large Amazonian reservoir

Published online by Cambridge University Press:  04 April 2014

Marcus Vinicius Moreira Barbosa
Affiliation:
Programa de Pós-Graduação em Ecologia de Ecótonos, Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
Josilaine Taeco Kobayashi
Affiliation:
Fundação Universidade do Tocantins (Unitins), Palmas, Tocantins, Brazil
Fernando Mayer Pelicice*
Affiliation:
Núcleo de Estudos Ambientais (Neamb), Universidade Federal do Tocantins, Porto Nacional, Tocantins, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

Reservoirs cause hydrological changes (i.e., water level stabilization) that favor the colonization of aquatic macrophytes. Knowing the ecological factors that determine the occurrence of these plants is critical for water management (e.g., plant control) and biodiversity conservation. In this sense, the present study investigated colonization patterns of Ludwigia sedoides in Lajeado reservoir (Tocantins River, Amazon Basin), in order to identify variables that influence colonization at habitat scale. We investigated the relationship between colonization (coverage area and occurrence) and morphometric (fetch, slope, depth and distance from shoreline) and biotic variables (local diversity of macrophytes and co-occurrence patterns). Stepwise regression selected fetch, depth and slope as the best variables to explain the variation in L. sedoides coverage, which together explained 46% of data variability. Fetch and slope were negatively correlated with coverage, whereas depth showed a positive correlation. No biotic variable was included in the model (P>0.05). However, the investigation of the geometric shape of bivariate correlations (null models) showed positive relationships with local species richness and richness of life forms (i.e., submerged, emergent, floating and epiphytic). In addition, an analysis of species co-occurrence (C-score) revealed that L. sedoides is negatively associated with some macrophyte species. We believe, however, that these results may be associated with species preferences for particular environmental conditions. In conclusion, the present study indicated that morphometric variables are potential predictors of the colonization of L. sedoides in Lajeado reservoir. Sheltered sites with low slope and moderate depths represent favorable environment for colonization and growth.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, A.A., Thomaz, S.M., Gomes, L.C. and Baltar, S.L.M.A., 2007a. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat. Ecol., 41, 611619.CrossRefGoogle Scholar
Agostinho, A.A., Marques, E.E., Agostinho, C.S., Almeida, D.A., Oliveira, R.J. and Rodrigues, J.B.M., 2007b. Fish ladder of Lajeado Dam: migration on one way routes? Neotrop. Ichthyol., 5, 121130.CrossRefGoogle Scholar
Agostinho, A.A., Pelicice, F.M. and Gomes, L.C., 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz. J. Biol., 68 ( 4 Suppl.), 11191132.CrossRefGoogle ScholarPubMed
Andersson, B., 2001. Macrophyte development and habitat characteristics in Sweden's large lakes. Ambio, 30, 503513.CrossRefGoogle ScholarPubMed
Azza, N., van den Koppel, J., Denny, P. and Kansiime, F., 2007. Shoreline vegetation distribution in relation to wave exposure and bay characteristics in a tropical great lake, Lake Victoria. J. Trop. Ecol., 23, 353360.CrossRefGoogle Scholar
Bini, L.M. and Thomaz, S.M., 2005. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brasil – Paraguay). Aquat. Bot., 83, 227238.CrossRefGoogle Scholar
Bini, L.M., Thomaz, S.M. and Carvalho, P., 2010. Limnological effects of Egeria najas Planchon (Hydrocharitaceae) in the arms of Itaipu Reservoir (Brazil, Paraguay). Limnology, 11, 3947.CrossRefGoogle Scholar
Boschilia, S.M., Oliveira, E.F. and Thomaz, S.M., 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain. Oecologia, 156, 203214.CrossRefGoogle Scholar
Boyd, C.E., 1971. The limnological role of aquatic macrophytes and their relationship to reservoir management. In: Hall, G.E. (ed.), Reservoir Fisheries and Limnology, Bethesda, Maryland. Am. Fish. Soc. Spec. Publ., 8, 153166.Google Scholar
Carpenter, S.R. and Lodge, D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341370.CrossRefGoogle Scholar
Coops, H., van Nes, E.H., van Den Berg, M.S. and Butijn, G.D., 2002. Promoting low-canopy macrophytes to compromise conservation and recreational navigation in a shallow lake. Aquat. Ecol., 36, 483492.CrossRefGoogle Scholar
Cronin, G., Lewis, W.M. Jr and Schiehser, M.A., 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat. Bot., 85, 3743.CrossRefGoogle Scholar
Duarte, C.M. and Kalff, J., 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr., 31, 10721080.CrossRefGoogle Scholar
Engelhardt, K.A.M. and Ritchie, M.E., 2002. The effect of aquatic plant species richness on wetland ecosystem functioning. Ecology, 83, 29112924.CrossRefGoogle Scholar
Fernandes, R., Gomes, L.C., Pelicice, F.M. and Agostinho, A.A., 2009. Temporal organization of fish assemblages in floodplain lagoons: the role of hydrological connectivity. Environ. Biol. Fish., 85, 99108.CrossRefGoogle Scholar
Gotelli, N.J. and Entsminger, G.L., 2001. EcoSim: null models software for ecology, version 6.21 Acquired Intelligence, Kesey-Bear, http://homepages.together.net/gentsmin/ecosim.html.
Gotelli, N.J. and McCabe, D., 2002. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology, 83, 20912096.CrossRefGoogle Scholar
Gualdoni, C.M., Boccolini, M.F., Oberto, A.M., Príncipe, R.E., Raffaini, G.B. and Corigliano, M.C., 2009. Potential habitats versus functional habitats in a lowland braided river (Córdoba, Argentina). Ann. Limnol. - Int. J. Lim., 45, 6978.CrossRefGoogle Scholar
Lacoul, P. and Freedman, B., 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev., 14, 89136.CrossRefGoogle Scholar
Léonard, R., Legendre, P., Jean, M. and Bouchard, A., 2008. Using the landscape morphometric context to resolve spatial patterns of submerged macrophyte communities in a fluvial lake. Landsc. Ecol., 23, 91105.CrossRefGoogle Scholar
Lolis, S.F. and Thomaz, S.M., 2011. Monitoramento da composição específica da comunidade de macrófitas aquáticas no reservatório Luis Eduardo Magalhães. Planta Daninha., 29, 247258.CrossRefGoogle Scholar
Madsen, J., Chambers, P., James, W., Koch, E. and Westlake, D., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 7184.CrossRefGoogle Scholar
Marcondes, D.A.S., Mustafá, A.L. and Tanaka, R.H., 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In: Thomaz, S.M. and Bini, L.M. (eds.), Ecologia e manejo de macrófitas aquáticas, Eduem, Maringá, 299317.Google Scholar
Mjelde, M., Lombardo, P., Berge, D. and Johansen, S.W., 2012. Mass invasion of non-native Elodea canadensis Michx. in a large, clear-water, species-rich Norwegian lake – impact on macrophyte biodiversity. Ann. Limnol. - Int. J. Lim., 48, 225240.CrossRefGoogle Scholar
Mukhopadhyay, G. and Dewanji, A., 2005. Presence of tropical hydrophytes in relation to limnological parameters - a study of two freshwater ponds in Kolkata, India. Ann. Limnol. - Int. J. Lim., 41, 281289.CrossRefGoogle Scholar
Murphy, K.J., Dickinson, G., Thomaz, S.M., Bini, L.M., Dick, K., Greaves, K., Kennedy, M.P., Livingstone, S., McFerran, H., Milne, J.M., Oldroyd, J. and Wingfiel, R.A., 2003. Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain: the upper Rio Paraná. Brazil. Aquat. Bot., 77, 257276.CrossRefGoogle Scholar
Neiff, J.J., Neiff, P.A.S.G., Patiño, C.A.E. and Chiozzi, B.I., 2000. Prediction of colonization by macrophytes in the Yaciretá reservoir of the Paraná river (Argentina and Paraguay). Rev. Bras. Biol., 60, 615626.CrossRefGoogle Scholar
Nõges, T., Luup, H. and Feldmann, T., 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjarv) in Estonia. Aquat. Ecol., 44, 8392.CrossRefGoogle Scholar
Pelicice, F.M., Agostinho, A.A. and Thomaz, S.M., 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecol., 27, 916.CrossRefGoogle Scholar
Pierini, S.A. and Thomaz, S.M., 2009. Effects of limnological and morphometric factors upon Zmin, Zmax and width of Egeria spp stands in a tropical reservoir. Braz. Arch. Biol. Technol., 52, 387396.CrossRefGoogle Scholar
Pott, V.J. and Pott, A. 2000. Plantas aquáticas do Pantanal, EMBRAPA, Corumbá, 353 p.Google Scholar
Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C., 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience, 47, 769784.CrossRefGoogle Scholar
Rea, T.E., Karapatakis, D.J., Guy, K.K., Pinder, J.E. and Mackey, H.E. Jr, 1998. The relative effects of water depth, fetch and other physical factors on the development of macrophytes in a small southeastern US pond. Aquat. Bot., 61, 289299.CrossRefGoogle Scholar
Riis, T. and Hawes, I., 2003. Effects of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshw. Biol., 48, 7587.CrossRefGoogle Scholar
Schutten, J., Dainty, J. and Davy, A.J., 2004. Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Ann. Bot., 93, 333341.CrossRefGoogle ScholarPubMed
Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular Plants, Edward Arnold, London, 610 p.Google Scholar
Sousa, W.T.Z., Thomaz, S.M., Murphy, K.J., Silveira, M.J. and Mormul, R.P., 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia, 632, 6578.CrossRefGoogle Scholar
Statsoft, 2005. Statistica (Data Analysis Software System). Version 7.1, StatSoft Inc, Tulsa.
Stone, L. and Roberts, A., 1990. The checkerboard score and species distributions. Oecologia, 85, 7479.CrossRefGoogle ScholarPubMed
Strand, J.A. and Weisner, S.E.B., 1996. Wave exposure related growth of epiphyton: implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia, 325, 11319.CrossRefGoogle Scholar
Straskraba, M. and Tundisi, J.G. 1999. Reservoir ecosystem functioning: theory and applications. In: Tundisi, J.G. and Straskraba, M. (eds.), Theoretical Reservoir Ecology and its Applications, International Institute of Ecology, São Carlos, pp. 565597.Google Scholar
Thomaz, S.M. and Cunha, E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnol. Bras., 22, 218236.CrossRefGoogle Scholar
Thomaz, S.M., Souza, D.C. and Bini, L.M., 2003. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia, 505, 119128.CrossRefGoogle Scholar
Tundisi, J.G. and Matsumura-Tundisi, T., 2003. Integration of research and management in optimizing multiples uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia, 500, 231242.CrossRefGoogle Scholar
Tundisi, J.G. and Matsumura-Tundisi, T. 2008. Limnologia, Oficina de Textos, São Paulo, 632 p.Google Scholar
van Nes, E.H., Scheffer, M., van den Berg, M. and Coops, H., 2002. Aquatic macrophytes: restore, eradicate or is there a compromise. Aquat. Bot., 72, 387403.CrossRefGoogle Scholar
Walker, I., Miyai, R. and Melo, M.D.A., 1999. Observations on aquatic macrophytes dynamics in the reservoir of the Balbina Hydroelectric Powerplant, Amazonas State, Brazil. Acta Amazonica, 29, 243265.CrossRefGoogle Scholar