Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T09:58:09.942Z Has data issue: false hasContentIssue false

Low nitrogen and phosphorus release from sediment deposited on a Danish restored floodplain

Published online by Cambridge University Press:  09 August 2011

Joachim Audet*
Affiliation:
Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
Carl C. Hoffmann
Affiliation:
Department of Bioscience, Aarhus University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
Henning S. Jensen
Affiliation:
Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
*
*Corresponding author: [email protected]
Get access

Abstract

River floodplains and riparian areas are often considered efficient traps for sediment and sediment-associated nutrients such as nitrogen (N) and phosphorus (P). However, few studies have focused on the fate of sediment-bound N and P after deposition on floodplains. In this study, the leaching of N and P from sediment deposited on a Danish-restored floodplain was quantified by placing trapped sediment samples under a rainfall simulator and exposing them to in situ temperatures and precipitation for two months. The nitrate release was 2.72–1600 μg NO3-N.g1 DW which corresponded to 0.06–6.42% of the total nitrogen contained in the sediment. Total dissolved phosphorus (TDP) release was 0.44–3.17 μg P.g1 DW, corresponding to 0.021–0.065% of the TP content of the sediment. Our results indicate that N and P release from floodplain sediment subjected to rainfall events is very low, which should be considered when applying floodplain restoration to mitigate the load of N and P to rivers.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldous, A.R., Craft, C.B., Stevens, C.J., Barry, M.J. and Bach, L.B., 2007. Soil phosphorus release from a restoration wetland, Upper Klamath Lake, Oregon. Wetlands, 27, 10251035.CrossRefGoogle Scholar
Andersen, J.M., 1976. Ignition method for determination of total phosphorus in lake sediments. Water Res., 10, 329331.CrossRefGoogle Scholar
Birgand, F., Skaggs, R.W., Chescheir, G.M. and Gilliam, J.W., 2007. Nitrogen removal in streams of agricultural catchments – A literature review. CRC C. R. Rev. Environ. Sci. Technol., 37, 381487.CrossRefGoogle Scholar
Brookes, P.C., Kragt, J.F., Powlson, D.S. and Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil-nitrogen – the effects of fumigation time and temperature. Soil Biol. Biochem., 17, 831835.CrossRefGoogle Scholar
Brunet, R.C., Pinay, G., Gazelle, F. and Roques, L., 1994. Role of the floodplain and riparian zone in suspended matter and nitrogen-retention in the Adour River, south-west France. Regul. River., 9, 5563.CrossRefGoogle Scholar
Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N. and Smith, V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8, 559568.CrossRefGoogle Scholar
Craig, L.S., Palmer, M.A., Richardson, D.C., Filoso, S., Bernhardt, E.S., Bledsoe, B.P., Doyle, M.W., Groffman, P.M., Hassett, B.A., Kaushal, S.S., Mayer, P.M., Smith, S.M. and Wilcock, P.R., 2008. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ., 6, 529538.CrossRefGoogle Scholar
Drury, C.F. and Beauchamp, E.G., 1991. Ammonium fixation, release, nitrification, and immobilization in high- and low-fixing soils. Soil Sci. Soc. Am. J., 55, 125129.Google Scholar
DS/EN ISO 13395, 1997. Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection.
DS/EN ISO 6878, 2004. Water quality – Determination of phosphorus – Ammonium molybdate spectrometric method.
DS/EN ISO 11732, 2005. Determination of ammonium nitrogen – Method by flow analysis (CFA and FIA) and spectrometric detection.
Ellermann, T., Andersen, H.V., Bossi, R., Christensen, J., Frohn, L.M., Geels, C., Kemp, K., Løfstrøm, P., Mogensen, B.B. and Monies, C., 2007. Atmosfærisk deposition 2006, NOVANA, Aarhus Universitet, Danmarks Miljøundersøgelser, Rapport fra DMU 645, 62 p. (in Danish).
European Parliament and of the Council, 2000. Establishing a framework for the Community action in the field of water policy, Directive 2000/60/EC.
Frederick, L.R., 1956. The formation of nitrate from ammonium nitrogen in soils: 1. Effect of temperature. Soil Sci. Soc. Am. Proc., 20, 496500.CrossRefGoogle Scholar
Fyns Amt., 2003. Odense pilot river basin, Provisional Article 5 Report pursuant to the Water Framework Directive, Fyns Amt, Fyn County, 132 p.
Hoffmann, C.C. and Baattrup-Pedersen, A., 2007. Re-establishing freshwater wetlands in Denmark. Ecol. Eng., 30, 157166.CrossRefGoogle Scholar
Hoffmann, C.C., Berg, P., Dahl, M., Larsen, S.E., Andersen, H.E. and Andersen, B., 2006. Groundwater flow and transport of nutrients through a riparian meadow – Field data and modelling. J. Hydrol., 331, 315335.CrossRefGoogle Scholar
Hoffmann, C.C., Kjaergaard, C., Uusi-Kämppä, J., Hansen, H.C.B. and Kronvang, B., 2009. Phosphorus retention in riparian buffers: review of their efficiency. J. Environ. Qual., 38, 19421955.CrossRefGoogle ScholarPubMed
Jensen, H.S. and Thamdrup, B., 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia, 253, 4759.CrossRefGoogle Scholar
Jensen, H.S., Kristensen, P., Jeppesen, E. and Skytthe, A., 1992. Iron-phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235, 731743.CrossRefGoogle Scholar
Johnston, C.A., 1991. Sediment and nutrient retention by fresh-water wetlands – effects on surface-water quality. Crit. Rev. Environ. Contr., 21, 491565.CrossRefGoogle Scholar
Junk, J., Bayley, P.B. and Sparks, R.E., 1989. The flood pulse concept and in river–floodplain systems. Proceedings of the International Large River Symposium. Can. Spec. Publ. Aquat. Sci., 106, 110127.Google Scholar
Kronvang, B., Svendsen, L.M., Brookes, A., Fisher, K., Moller, B., Ottosen, O., Newson, M. and Sear, D., 1998. Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, III – Channel morphology, hydrodynamics and transport of sediment and nutrients. Aquat. Conserv., 8, 209222.3.0.CO;2-C>CrossRefGoogle Scholar
Kronvang, B., Andersen, I.K., Hoffmann, C.C., Pedersen, M.L., Ovesen, N.B. and Andersen, H.E., 2007. Water exchange and deposition of sediment and phosphorus during inundation of natural and restored lowland floodplains. Water Air Soil Pollut., 181, 115121.CrossRefGoogle Scholar
Kronvang, B., Hoffmann, C.C., Dröge, R. and Andersen, H.E., 2009. Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Mar. Freshw. Res., 60, 638646.CrossRefGoogle Scholar
Loeb, R., Lamers, L.P.M. and Roelofs, J.G.M., 2008. Prediction of phosphorus mobilisation in inundated floodplain soils. Environ. Pollut., 156, 325331.CrossRefGoogle ScholarPubMed
Mitsch, W.J. and Jørgensen, S.V., 2003. Ecological engineering and ecosystem restoration, 2nd edn., John Wiley and Sons, New York, 472 p.Google Scholar
Moss, B., 2008. Water pollution by agriculture. Philos. Trans. R. Soc. B, 363, 659666.CrossRefGoogle ScholarPubMed
Moss, T. and Monstadt, J., 2008. Restoring Floodplains in Europe: Policy Contexts and Project Experiences, IWA Publishing, London, 355 p.Google Scholar
Naiman, R.J. and Decamps, H., 1997. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Evol. Syst., 28, 621658.CrossRefGoogle Scholar
Noe, G.B. and Hupp, C.R., 2009. Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems, 12, 728746.CrossRefGoogle Scholar
Olde Venterink, H., Vermaat, J.E., Pronk, M., Wiegman, F., van der Lee, G.E.M., van den Hoorn, M.W., Higler, L.W.G.B. and Verhoeven, J.T.A., 2006. Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl. Veg. Sci., 9, 163174.CrossRefGoogle Scholar
Paludan, C. and Jensen, H.S., 1995. Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands, 15, 365373.CrossRefGoogle Scholar
Petersen, J.D., Rask, N., Madsen, H.B., Jorgensen, O.T., Petersen, S.E., Nielsen, S.V.K., Pedersen, C.B. and Jensen, M.H., 2009. Odense Pilot River Basin: implementation of the EU Water Framework Directive in a shallow eutrophic estuary (Odense Fjord, Denmark) and its upstream catchment. Hydrobiologia, 629, 7189.CrossRefGoogle Scholar
Pinay, G., Black, V.J., Planty-Tabacchi, A.M., Gumiero, B. and Decamps, H., 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry, 50, 163182.CrossRefGoogle Scholar
Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty, A.M., Hefting, M.M., Burt, T.P., Black, V.A., Nilsson, C., Iordache, V., Bureau, F., Vought, L., Petts, G.E. and Decamps, H., 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw. Biol., 52, 252266.CrossRefGoogle Scholar
Psenner, R., Pucko, R. and Sager, M., 1984. Die fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Archiv. Hydrobiol., 70, 111155 (in German).Google Scholar
Reddy, K.R. and DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and Applications, CRC Press, Boca Raton, FL, 774 p.CrossRefGoogle Scholar
Stanford, G., Frere, M.H. and Schwaninger, D.H., 1973. Temperature coefficient of soil nitrogen mineralization. Soil Sci., 115, 321323.CrossRefGoogle Scholar
Thodsen, H., 2007. The influence of climate change on stream flow in Danish rivers. J. Hydrol., 333, 226238.CrossRefGoogle Scholar
Tockner, K., Pennetzdorfer, D., Reiner, N., Schiemer, F. and Ward, J.V., 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw. Biol., 41, 521535.CrossRefGoogle Scholar
Tockner, K., Malard, F. and Ward, J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 28612883.3.0.CO;2-F>CrossRefGoogle Scholar
Tockner, K. and Stanford, J.A., 2002. Riverine flood plains: present state and future trends. Environ. Conserv., 29, 308330.CrossRefGoogle Scholar
Trehan, S.P., 1996. Immobilisation of (NH4+)-N-15 in three soils by chemical and biological processes. Soil Biol. Biochem., 28, 10211027.CrossRefGoogle Scholar
Vejen, F., 2005. Pilotprojekt: Beregning af dynamisk korrektion af nedbør på Samsø, 1989–2003, Danish Meteorological Institute, Copenhagen, Denmark, 51 p. (in Danish).Google Scholar
Vought, L.B.M., Dahl, J., Pedersen, C.L. and Lacoursiere, J.O., 1994. Nutrient retention in Riparian ecotones. Ambio, 23, 342348.Google Scholar
Walling, D.E., Owens, P.N. and Leeks, G.J.L., 1999. Rates of contemporary overbank sedimentation and sediment storage on the floodplains of the main channel systems of the Yorkshire Ouse and River Tweed, UK. Hydrol. Process., 13, 9931009.3.0.CO;2-C>CrossRefGoogle Scholar
Ward, J.V., Tockner, K. and Schiemer, F., 1999. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. River, 15, 125139.3.0.CO;2-E>CrossRefGoogle Scholar
Zar, J.H., 1996. Comparing simple linear regression equations. In: Biostatistical Analysis, 3rd edn., Prentice Hall, Englewood Cliffs, NJ, 353359.Google Scholar