Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:07:01.513Z Has data issue: false hasContentIssue false

Influence of landscape on assemblages of Chironomidae in Neotropical streams

Published online by Cambridge University Press:  17 December 2012

Debora Sensolo
Affiliation:
Programa de Pós Graduação em Ecologia, Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões – Campus Erechim, Av. Sete de Setembro, 1621, CEP 99700-000, Erechim, Rio Grande do Sul, Brazil
Luiz Ubiratan Hepp*
Affiliation:
Programa de Pós Graduação em Ecologia, Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões – Campus Erechim, Av. Sete de Setembro, 1621, CEP 99700-000, Erechim, Rio Grande do Sul, Brazil
Vanderlei Decian
Affiliation:
Programa de Pós Graduação em Ecologia, Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões – Campus Erechim, Av. Sete de Setembro, 1621, CEP 99700-000, Erechim, Rio Grande do Sul, Brazil
Rozane Maria Restello
Affiliation:
Programa de Pós Graduação em Ecologia, Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões – Campus Erechim, Av. Sete de Setembro, 1621, CEP 99700-000, Erechim, Rio Grande do Sul, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

Landscape is important in determining the composition of aquatic assemblage, and benthic invertebrates, particularly Chironomidae, are often used as bioindicators of environmental quality because their occurrence and distribution are influenced by different land uses. The objective of this study was to evaluate the influence of different land uses, considering three landscape scales (drainage basins, riparian buffer and streams), on chironomid assemblage. We sampled streams located in an agricultural matrix by collecting chironomid larvae and water samples and performed a landscape analysis using Geographical Information System techniques. The drainage basins had a high percentage of agricultural land use; in all of the drainage basins studied, 79% of the riparian buffer was not in accordance with Brazilian law. Cricotopus proved to be a good indicator of the agricultural conditions, whereas Thienemanniella and Rheotanytarsus proved to be indicators of exposed soil. Lopescladius was more sensitive to disturbance and was positively correlated with the presence of riparian vegetation. Although the variables at the local scale (stream) were responsible for a major change in the assemblage, the landscape attributes at large scales (drainage basin and riparian buffer) generated significant effects on Chironomidae fauna. Our results suggest the importance of the conservation of two larger landscape scales to support the equilibrium and maintenance of aquatic assemblage.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., 2004. Landscape and rivers capes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Syst., 35, 257284.CrossRefGoogle Scholar
Armitage, P.D., Cranston, P.S. and Pinder, L.C.V., 1995. The Chironomidae: Biology and ecology of non-biting midges, Chapman and Hall, London.CrossRefGoogle Scholar
Bacey, J. and Spurlock, F., 2007. Biological assessment of urban and agricultural streams in the California Central Valley. Environ. Monitor. Assess., 130, 483493.CrossRefGoogle Scholar
Barrella, W., Petrere, M. Jr, Smith, W.S. and Montag, L.F.A., 2000. As relações entre matas ciliares, os rios e os peixes. Cap. 12. In: Rodrigues, R.R. and Leitão-Filho, H.F. (eds.), Matas Ciliares Conservação e Recuperação. Edusp, São Paulo.Google Scholar
Benstead, J.P. and Pringle, C.M., 2004. Deforestation alters the resource base and biomass of endemic stream insects in eastern Madagascar. Freshwater Biol., 4, 490501.CrossRefGoogle Scholar
Benstead, J.P., Douglas, M.M. and Pringle, C., 2003. Relationships of stream invertebrate communities to deforestation in eastern Madagascar. Ecol. Appl., 3, 147149.Google Scholar
Bernardi, S. and Budke, J.C., 2010. Estrutura da sinúsia epifítica e efeito de borda em uma área de transição entre floresta estacional semidecídua e floresta Ombrófila Mista. Floresta, 40, 8182.CrossRefGoogle Scholar
Budke, J.C., Alberti, M.S., Zanardi, C., Baratto, C. and Zanin, E.M., 2010. Bamboo dieback and tree regeneration responses in a subtropicalforest of South America. Forest Ecol. Manage., 260, 13451349.CrossRefGoogle Scholar
Burns, D.A., 2005. Macroinvertebrate response to land cover, habitat, and water chemistry in a mining-impacted river ecosystem: a GIS watershed analysis. Aquat. Sci., 67, 403423.CrossRefGoogle Scholar
Campbell, B.D., Haro, R.J. and Richardson, W.B., 2009. Effects of agricultural land use on chironomid communities: comparisons among natural wetlands and farm ponds. Wetlands, 29, 10701080.CrossRefGoogle Scholar
Corbi, J.J. and Trivinho-Strixino, S., 2008. Effects of land use on lotic Chironomid communities of southeast Brazil: emphasis on the impact of sugar cane cultivation. Bol. Mus. Mun. Funchal, Sup., 13, 93100.Google Scholar
Decian, V., Zanin, E.M., Henke, C., Quadros, F.R. and Ferrari, C.A., 2009. Uso da terra na região Alto Uruguai do Rio Grande do Sul e obtenção de banco de dados relacional de fragmentos de vegetação arbórea. Perspect., 33, 165176.Google Scholar
Epler, J., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina, Departament of Enviromental a Natural Resources, Orlando.Google Scholar
Forman, R.T.T. and Godron, M., 1986. Landscape Ecology, John Wiley, New York.Google Scholar
Hawbaker, T.J., Radeloff, V.C., Clayton, M.K., Hammer, R.B. and Gonzalez-Abraham, C.E., 2006. Road development, housing-growth, and landscape fragmentation in Northing Wisconsin. Ecol. Appl., 16, 12221237.CrossRefGoogle Scholar
Henriques-Oliveira, A.L., Sanseverino, A.M. and Nessimian, J.L., 1999. Larvas de Chironomidae (Insecta: Diptera) de substrato rochoso em dois  rios em diferentes estados de preservação na Mata Atlântica, RJ. Acta Limnol. Brasil., 11, 1728.Google Scholar
Henriques-Oliveira, A.L., Dorvillé, L.F.M. and Nessimian, J.L., 2003. Distribution of Chironomidae larvae fauna (Insecta: Diptera) on different substrates in a stream at Floresta da Tijuca, RJ, Brazil. Acta Limnol. Brasil., 15, 6984.Google Scholar
Hepp, L.U. and Restello, R.M., 2010. Macroinvertebrados bentônicos como ferramenta para avaliação de impactos resultantes dos usos da terra (Rio Grande do Sul, Brasil). In: Santos, J.E., Zanin, E.M. and Mosquini, L.E. (eds.). Faces da Policemia da Paisagem: Ecologia, Planejamento, Percepção, Rima, São Carlos, SP.Google Scholar
Hepp, L.U. and Santos, S., 2009. Benthic communities of streams related to different land uses in a hydrographic basin in southern Brazil. Environ. Monitor. Assess., 157, 305318.CrossRefGoogle Scholar
Hepp, L.U., Biasi, C., Milesi, S.V., Veiga, F.O. and Restello, R.M. 2008. Chironomidae (Diptera) larvae associated to Eucalyptus globulus and Eugenia uniflora leaf litter in a subtropical stream (Rio Grande do Sul, Brazil). Acta Limnol. Brasil., 20, 345350.Google Scholar
Hepp, L.U., Milesi, S.V., Biasi, C. and Restello, R.M., 2010. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia, 27, 106113.CrossRefGoogle Scholar
Hepp, L.U., Landeiro, V.L. and Melo, A.S., 2012. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a Neotropical stream. Int. Rev. Hydrobiol., 97, 157167.CrossRefGoogle Scholar
Kleine, P. and Trivinho-Strixino, S., 2005. Chironomidae and other aquatic macroinvertebrates of a first order stream: community response after habitat fragmentation. Acta Limnol. Brasil., 17, 8190.Google Scholar
Kyriakeas, S.A. and Watzin, M.C., 2006. Effects of adjacent agricultural activities and watershed characteristics on stream macroinvertebrate communities. J. Am. Water Resour. Assoc., 42, 425441.CrossRefGoogle Scholar
Lampert, M. and Allan, J.D., 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use cover and habitat structure on fish and macroinvertebrates. Environ. Manage., 23, 257270.CrossRefGoogle Scholar
Legendre, P. and Legendre, L., 2003. Numerical Ecology, Elsevier, Amsterdam.Google Scholar
Lencioni, V., Marziali, L. and Rossaro, B., 2012. Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Sci., 31, 525541.CrossRefGoogle Scholar
Maloney, K.O., Feminella, J.W., Mitchell, R.M., Miller, S.A., Mulholland, P.J. and Houser, J.N., 2008. Land use and small streams: identifying relationships between historical land use and contemporary stream conditions. J. North Am. Benthol. Soc., 27, 280294.CrossRefGoogle Scholar
Matson, P.A., Parton, W.J., Power, A.G. and Swift, M.J., 1997. Agricultural intensification and ecosystem properties. Science, 277, 504509.CrossRefGoogle ScholarPubMed
Melo, A.S., Schneck, F., Hepp, L.U., Simões, N.R., Siqueira, T. and Bini, L.M., 2011. Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnol. Brasil., 23, 318331.CrossRefGoogle Scholar
Merritt, R.W. and Cummins, K.W., 1996. An Introduction to the Aquatic Insects of North America, Dubuque, Kendal/Hunt, USA.Google Scholar
Metzger, J.P., 2010. O Código Florestal tem base científica? Nat. Conserv., 1, 9299.CrossRefGoogle Scholar
Meyer, J.L., Paul, M.J. and Taulbee, W.K., 2005. Stream ecosystem function in urbanizing landscape. J. North Am. Benthol. Soc., 24, 602612.CrossRefGoogle Scholar
Moulton, T.P. and Souza, M.L., 2006. Conservação com base em bacias hidrográficas. In: Rocha, C.F.D. (ed.), Biologia da Conservação: Essências. Rima Editora, São Carlos, 157182.Google Scholar
Niyogi, D.K., Koren, M., Arbuckle, C.J. and Townsend, C.R., 2007. Stream communities along a catchment land-use Gradient: subsidy-stress responses to pastoral development. Environ. Manage., 39, 213225.CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H., 2010. Multivariate Analysis of Ecological Communities in R: package “vegan”, 2010. http://vegan.rforge. r-project.org/
Pinder, L.C.V., 1986. Biology of Freshwater Chironomidae. Annu. Rev. Entomol., 31, 123.CrossRefGoogle Scholar
Pinder, L.C.V., 1995. The habitats of Chironomid larvae. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (eds.), The Chironomidae: Biology and Ecology of Non-biting Midges, Chapman and Hall, London, 107135.CrossRefGoogle Scholar
R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org
Roque, F.O., Siqueira, T. and Escarpinati, S.C., 2009. Do fallen fruit-dwelling Chironomids in streams respond to riparian degradation? Pan-Am. J. Aquat. Sci., 4, 357362.Google Scholar
Roque, F.O., Siqueira, T., Bini, L.M., Ribeiro, M.C., Tambosi, L.R., Ciocheti, G. and Trivinho-Strixino, S., 2010. Untangling associations between Chironomid taxa in neotropical streams using local and landscape filters. Freshwater Biol., 55, 847865.CrossRefGoogle Scholar
Rosin, G.C. and Takeda, A.M., 2007. Larvas de Chironomidae (Diptera) da planície de inundação do alto rio Paraná: distribuição e composição em diferentes ambientes e períodos hidrológicos. Acta Sci. Biol. Sci., 29, 5763.CrossRefGoogle Scholar
Roy, A.H., Rosemond, A.D., Paul, M.J., Leigh, D.S. and Wallace, J.B., 2003. Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshwater Biol., 48, 329346.CrossRefGoogle Scholar
Sandin, L., 2009. The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrate communities in a south-Swedish Catchment. Fundam. Appl. Limnol., 174, 7587.CrossRefGoogle Scholar
Silver, P., Mccall, C.B. and Wooster, D., 2004. Habitat partitioning by Chironomid larvae in arrays of leaf patches in streams. J. North Am. Benthol. Soc., 23, 467479.2.0.CO;2>CrossRefGoogle Scholar
Simião-Ferreira, J., Demarco, P. Jr., Mazão, G., and Carvalho, A.R., 2009. Chironomidae assemblage structure in relation to organic enrichment of an aquatic environment. Neotrop. Entomol., 38, 464471.CrossRefGoogle ScholarPubMed
Smith, R.F. and Lamp, W.O., 2008. Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. J. North Am. Benthol. Soc., 27, 161175.CrossRefGoogle Scholar
Sparovek, G., Ranieri, S.B.L., Gassner, A., De-Maria, I.C., Schnug, E., Santos, R.F. and Joubert, A., 2002. A conceptual framework for the definition of the optimal width of riparian forests. Agric. Ecosyst. Environ., 90, 169175.CrossRefGoogle Scholar
Sponseller, R.A., Benfield, E.F. and Vallet, H.M., 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol., 4, 14091424.CrossRefGoogle Scholar
Stewart, B.A., 2011. An assessment of the impacts of timber plantations on water quality and biodiversity values of Marbellup Brook, Western Australia. Environ. Monitor. Assess., 173, 941953.CrossRefGoogle ScholarPubMed
Trivinho-Strixino, S. and Strixino, G., 1995. Larvas de Chironomidae (Diptera) do estado de São Paulo: guia de identificação e diagnose dos gêneros, PP-ERN/UFSCar, São Carlos.Google Scholar
Tundisi, J.G. and Tundisi, T.M., 2008. Limnologia, Oficina de Textos, São Paulo.Google Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Gushing, E., 1980. The river continuum concept. Can. J. Fish Aquat. Sci., 3, 130137.CrossRefGoogle Scholar
Vondracek, B., Blann, K.L., Cox, C.B., Nerbonne, J.F., Mumford, K.G. and Nerbonne, B.A., 2005. Land use, spatial scale, and stream systems: lessons from an agriculture region. Environ. Manage., 36, 775791.CrossRefGoogle Scholar
von Schilleler, D., Martin, E. and Riera, J.L., 2008. Nitrate retention and removal in Mediterranean streams with contrasting land uses: a 15N tracer study. Biogeosci. Discuss., 5, 33073346.CrossRefGoogle Scholar
Washburn, T. and Sanger, D., 2011. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Environ. Monitor. Assess., 180, 177188.CrossRefGoogle ScholarPubMed