Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T08:27:57.617Z Has data issue: false hasContentIssue false

Hydrochemical and microbiological distinction and function of ombrotrophic peatland lagg as ecotone between Sphagnum peatland and forest catchment (Poleski National Park, eastern Poland)

Published online by Cambridge University Press:  06 August 2012

Tomasz Mieczan*
Affiliation:
Department of Hydrobiology, University of Life Sciences, Dobrzańskiego 37, 20-262 Lublin, Poland
Monika Tarkowska-Kukuryk
Affiliation:
Department of Hydrobiology, University of Life Sciences, Dobrzańskiego 37, 20-262 Lublin, Poland
Irena Bielańska-Grajner
Affiliation:
Department of Hydrobiology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
*
*Corresponding author: [email protected]
Get access

Abstract

The testate amoeba, ciliate and rotifera communities living in interstitial waters in peatbog in eastern Poland were studied. Sampling was done on a monthly basis from April to November 2007–2008. Microbial communities were examined in a transect including three sites: (1) pine forest (site located 5 m from the lagg/forest contact zone), (2) lagg, (3) open peatbog (the centre of the peatbog). At each of the sites, interstitial water was sampled by means of piezometric wells placed to a depth of 1 m. The species richness and abundance of protozoa and rotifers significantly differed between the studied stations, with the lowest numbers in the pine forest and the highest in the lagg. These differences between macro-habitats may be due to differences in environmental conditions. The distribution of samples in ordination space led to conclude that studied habitats are distributed along the falling gradient of pH and rising gradient of total organic carbon, water table depth and nitrate nitrogen. Assemblages of all three groups showed a strong compositional gradient correlated with water-table depth, conductivity and total phosphorus. However, species composition of ciliates and rotifers was explained by nitrate nitrogen and/or phosphates concentrations. The results suggest that lagg zone of a raised bog can fulfil the function of an ecotone zone, distinguished by a significant increase in biodiversity, abundance and species specificity of micro-organisms. It can also be a place of very efficient matter and energy flow in a peat bog ecosystem.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augustin, H., Foissner, W. and Adam, H., 1984. An improved pyridinated silver carbonate method which need few specimens and yields permanent slides of impregnation ciliates (Protozoa, Ciliophora). Mikroskopie, 41, 134137.Google Scholar
Bałaga, K., 2007. Transformation of lake ecosystem into peat bog and vegetation history based on Durne Bagno mire (Lublin Polesie, E Poland). Geochronomet., 29, 2347.CrossRefGoogle Scholar
Bamforth, S.S., Wall, D.H. and Virginia, R., 2001. Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biol., 28, 756762.CrossRefGoogle Scholar
Bateman, L. and Davis, C., 1980. Rotifera in hummock-hollow formation in poor (mesotrophic) fen in Newfoundland. Int. Rev. Hydrobiol., 65, 127153.CrossRefGoogle Scholar
Berzins, B. and Pejler, B., 1987. Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107116.CrossRefGoogle Scholar
Bielańska-Grajner, I., Cudak, A. and Mieczan, T., 2011. Epiphytic rotifer abundance and diversity in moss patches in bogs and fens in Polesie National Park (Eastern Poland). Int. Rev. Hydrobiol., 96, 2938.CrossRefGoogle Scholar
Bobrov, A.B., Charman, D.J. and Warner, B.G., 1999. Ecology of Testate Amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protistologica., 150, 125136.Google ScholarPubMed
Borcard, D. and Vaucher von Ballmoos, C., 1997. Oribatid mites (Acari, Oribatida) of a primary peat bog-palustre transition in the Swiss Jura mountains. Ecoscience, 4, 470479.CrossRefGoogle Scholar
Charman, D.J., Hendon, D. and Woodland, W., 2000. The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Quaternary Research Association, Technical Guide, UK, London, 147 p.
Clarke, K.J., 2003. Guide to the Identification of Soil Protozoa – Testate Amoebae. Freshwater Biological Association, UK, Cumbria, 40 p.Google Scholar
Di Castri, F., Hansen, A.J. and Holland, M.M., 1988. A new look at ecotones: emerging international projects on landscape boundaries. Biol. Int., 17, 1163.Google Scholar
Finlay, B.J. 1980. Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile. Freshwater Biol., 10, 1534.CrossRefGoogle Scholar
Foissner, W. and Berger, H., 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshwater Biol., 35, 375470.Google Scholar
Foissner, W., Berger, H. and Kohmann, F., 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Hymenostomatida, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 548 p.Google Scholar
Foissner, W., Berger, H. and Schaumburg, J., 1999. Identification and Ecology of Limnetic Plankton Ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 800 p.Google Scholar
Gilbert, D. and Mitchell, E.A.D., 2006. Microbial diversity in Sphagnum peatlands. In: Martini, I.P., Martinez, Cortizas, A. and Chesworth, W. (eds.), Peatlands: Evolution and Records of Environmental and Climate Changes, Elsevier B.V., Amsterdam, 287319.CrossRefGoogle Scholar
Gilbert, D., Amblard, C., Bourdier, G. and Francez, A.J., 1998. The microbial loop at the surface of a peatland: structure, functioning and impact of nutrients inputs. Microbial Ecol., 35, 8993.CrossRefGoogle Scholar
Gilbert, D., Amblard, C., Bourdier, G., Francez, A.J. and Mitchell, E.A.D., 2000. La régime alimentaire des thècamoebiens. Ann. Biol., 39, 5768.Google Scholar
Golterman, H.L., 1969. Methods for Chemical Analysis of Freshwaters, Blackwell Scientific Publications, Oxford, Edinburgh, 213 p.Google Scholar
Górniak, A., Jakatierynczuk-Rudczyk, E. and Dobrzyń, P., 1999. Hydrochemistry of three dystrophic lakes in north-eastern Poland. Acta Hydroch. Hydrobiol., 27, 1218.3.0.CO;2-X>CrossRefGoogle Scholar
Grolière, C.A., 1975. Descriptions de quleques ciliés hypotriches des tourbières à sphaignes et des étendues d'eau acides. Protistologica, 11, 481498.Google Scholar
Grolière, C.A., 1977. Contribution à l'étude de quelques ciliés des sphaignes: II – Dynamique des populations. Protistologica, 13, 335352.Google Scholar
Grolière, C.A., 1978. Contribution à l'étude des ciliés des sphaignes: III. Étude mathématique des résultats. Protistologica, 14, 295311.Google Scholar
Heal, O.W., 1964. Observations on the seasonal and spatial distribution of testacea (Protozoa: Rhizopoda) in Sphagnum. J. Anim. Ecol., 33, 395412.CrossRefGoogle Scholar
Herbichowa, M. and Potocka, J., 2004. Raised beatbogs with peat forming plants. Torfowiska wysokie z roślinnością torfotwórczą (żywe). Guide to Protection of Habitats and Species NATURA 2000, pp. 115137.
Jassey, E.J.V., Chiapusio, G., Mitchell, E.A.D., Binet, P., Toussaint, M.L. and Gilbert, D., 2011. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol., 2, 374385.CrossRefGoogle Scholar
Jauhiainen, S., 2002. Testacean amoebae in different types of mire following drainage and subsequent restoration. Eur. J. Protistol., 38, 5972.CrossRefGoogle Scholar
Kruk, M., 2003. Biogeochemical multifunctionality of wetland ecotones in Lakeland agricultural landscape. Pol. J. Ecol., 2, 247254.Google Scholar
Lamentowicz, M. and Mitchell, E.A.D., 2005. The ecology of Testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol., 50, 4863.CrossRefGoogle ScholarPubMed
Lamentowicz, M., Lamentowicz, Ł., van der Knaap, W.O., Gąbka, M. and Mitchell, E.A.D., 2010. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient. Microb. Ecol., 59, 499510.CrossRefGoogle ScholarPubMed
Lepš, J. and Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 269 p.CrossRefGoogle Scholar
Meisterfeld, R., 1977. Horizontal and vertical distribution of Testacea (Rhizopoda-Testacea) in Sphagnum. Arch. Hydrobiol., 79, 319356.Google Scholar
Mieczan, T., 2007. Epiphytic protozoa (Testate amoebae, ciliates) associated with Sphagnum in peatbogs: relationship to chemical parameters. Pol. J. Ecol., 55, 7990.Google Scholar
Mieczan, T., 2009a. Ciliates in Sphagnum peatlands: vertical micro-distribution, and relationships of species assemblages with environmental parameters. Zool. Stud., 1, 3348.Google Scholar
Mieczan, T., 2009b. Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: vertical micro-distribution and species assemblages in relation to environmental parameters. Ann. Limnol. -Int. J. Limnol., 45, 4149.CrossRefGoogle Scholar
Mieczan, T., 2010. Vertical micro-zonation of testate amoebae and ciliates in peatland waters in relation to potential food resources and grazing pressure. Int. Rev. Hydrobiol., 95, 86102.CrossRefGoogle Scholar
Mieczan, T., 2012. Distributions of Testate amoebae and Ciliates in different types of peatlands and their contributions to the nutrient supply. Zool. Stud., 51, 19.Google Scholar
MVSP., 2002. Multivariate Statistical Package. Kovach Computering Services, Vales, UK.
Payne, R.J., 2011. Can testate amoeba-based paleohydrology be extended to fens? J. Quat. Sci., 26, 1527.CrossRefGoogle Scholar
Payne, R.J. and Mitchell, E.A.D., 2007. Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of transfer function for paleohydrological reconstruction. Protistologica, 158, 159171.Google Scholar
Pejler, B. and Berzins, B., 1993. On the ecology of mire rotifers. Limnology, 23, 295300.Google Scholar
Petz, W., 1987. Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica. Polar Biol., 18, 3344.CrossRefGoogle Scholar
Pierce, R.W. and Turner, J.T., 1992. Ecology of plankton ciliates in marine food webs. Rev. Aquat. Sci., 6, 139181.Google Scholar
Strűdel-Kypke, M.C. and Schönborn, W. 1999. Periphyton and sphagnicolous protists of dystrophic bog lakes (Brandenburg, Germany). II. Characteristic species and trophy of the lakes. Limnologica, 29, 407424.CrossRefGoogle Scholar
ter Braak, C.J.F. and Šmilauer, P., 2002. CANOCO Reference Manual and User`s Guide to Canoco fof Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 p.Google Scholar
Warner, B.G. and Asada, T., 2006. Biological diversity of peatlands in Canada. Aquat. Sci., 68, 240253.CrossRefGoogle Scholar
Warner, B.G., Asada, T. and Quinn, N.P., 2007. Seasonal influences on the ecology of Testate amoebae (Protozoa) in a small Sphagnum peatland in southern Ontario, Canada. Microb. Ecol., 54, 91100.CrossRefGoogle Scholar
Wilkinson, D.M. and Mitchell, E.A.D., 2010. Testate amoebae and nutrient cycling with particular reference to soil. Geomicrobiol. J., 27, 520533.CrossRefGoogle Scholar