Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:03:46.801Z Has data issue: false hasContentIssue false

Environmental factors restrict the invasion process of Limnoperna fortunei (Mytilidae) in the Neotropical region: A case study from the Andean tributaries

Published online by Cambridge University Press:  09 August 2011

Gustavo Darrigran*
Affiliation:
CONICET, División Zoología Invertebrados, Museo de La Plata, FCNyM-UNLP, Paseo del Bosque, 1900 La Plata, Argentina
Cristina Damborenea
Affiliation:
CONICET, División Zoología Invertebrados, Museo de La Plata, FCNyM-UNLP, Paseo del Bosque, 1900 La Plata, Argentina
Edmundo C. Drago
Affiliation:
Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria – Paraje “El Pozo”, 3000 Santa Fe, Argentina
Ines Ezcurra de Drago
Affiliation:
Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria – Paraje “El Pozo”, 3000 Santa Fe, Argentina
Aldo Paira
Affiliation:
Instituto Nacional de Limnología, CONICET-UNL, Ciudad Universitaria – Paraje “El Pozo”, 3000 Santa Fe, Argentina
*
*Corresponding author: [email protected]
Get access

Abstract

The golden mussel Limnoperna fortunei was introduced into Argentina in 1991 and has since been spreading through the Plata and Guaíba basins at a rate of 240 km.year−1. To assess their ability to invade the Andean tributaries of the Plata Basin (Pilcomayo, Bermejo and Salado del Norte rivers), their current range was assessed and related to the abiotic parameters of sites where they were present and absent. These data were then compared with their known tolerances to identify possible barriers to invasion. Outputs suggested that three environmental parameters are barriers to invasion: salinity and river flow intermittence in different sectors of the rivers Pilcomayo and Salado del Norte, and concentration of suspended sediments in the Bermejo River and in the upper reaches of the Salado del Norte and Pilcomayo rivers. The importance of these findings is discussed in relation to using environmental data to infer the invasion possibilities and the utility of environmental data to better understand invasion patterns and processes.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarilla, M.E. and Amsler, M.L., 2005. Evaluación del transporte de sedimentos en el tramo medio del río Pilcomayo. In: XX Congreso Nacional del Agua, Mendoza, Argentina (in CD-ROM).Google Scholar
Amsler, M. and Drago, E.C., 1999. A review of the suspended sediment budget at the confluence of the Paraná and Paraguay River. In: HiBAm (ed.), Proceedings of the International Symposium “Hydrological and Geochemical Processes in Large Scale River Basins”, Manaus, Brazil (in CD-ROM).Google Scholar
Angonesi, L.G., Rosa, N.G. and da Bemvenuti, C.E., 2008. Tolerance to salinities shocks of the invasive mussel Limnoperma fortunei under experimental conditions. Iheringia Sér Zool., 98, 6699.CrossRefGoogle Scholar
APHA, 1985. Standard methods for examination of water and waste-water (16th edn.), American Public Health Association, New York.PubMed
Barbosa, F.G. and Melo, A.S., 2009. Modelo preditivo de sobrevivência do Mexilhão Dourado (Limnoperna fortunei) em relação a variações de salinidade na Laguna dos Patos, RS, Brasil. Biota Neotrop., 9, 407412.CrossRefGoogle Scholar
Benda, L., Poff, N.L., Miller, D., Dunne, T., Reeves, G., Pess, G. and Pollock, M., 2004. The network dynamics hypothesis: how channel networks structure riverine habitats. BioScience, 54, 413427.CrossRefGoogle Scholar
Boltovskoy, D., Correa, N., Cataldo, D. and Sylvester, F., 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río dela Plata watershed and beyond. Biol. Invasions, 8, 947963.CrossRefGoogle Scholar
Bonetto, A.A., 1994. Austral rivers of South America. In: Margalef, R. (ed.), Limnology now: a paradigm of planetary problems, Elsevier Science B.V., Amsterdam, 425472.Google Scholar
Caley, P., Lonsdale, W.M. and Pheloung, P.C., 2006. Quantifying uncertainty in predictions of invasiveness, with emphasis on weed risk assessment. Biol. Invasions, 8, 15951604.CrossRefGoogle Scholar
Capítoli, R.R. and Bemvenuti, C.E., 2004. Distribuição do mexilhão dourado Limnoperna fortunei (Dunker, 1857) na área estuarina da Lagoa dos Patos e Canal São Gonçalo. Anais do VI Simpósio de Ecossistemas Brasileiros, Publ. ACIESP, 110, 98107.Google Scholar
Capítoli, R.R., Colling, L.A. and Bemvenuti, C.E., 2008. Cenários de distribuição do mexilhão dourado Limnoperna fortunei (Mollusca – Bivalvia) sob distintas condições de salinidade no complexo lagunar Patos-Mirim, RS – BRASIL. Atlântica, 30, 3544.Google Scholar
Carlton, J.T., 1996. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv., 78, 97106.CrossRefGoogle Scholar
Choi, S.S. and Kim, J.S., 1985. Studies on the metamorphosis and the growth of larva in Limnoperna fortunei. Korean J. Malacol., 1, 1318.Google Scholar
Choi, S.C. and Shin, C.N., 1985. Study on early development and larvae of Limnoperna fortunei. Korean J. Malacol., 1, 512.Google Scholar
Claudi, R. and Mackie, G.L., 1994. Zebra Mussel Monitoring and Control, Lewis Publishers, Boca Raton, FL, 227 p.Google Scholar
Cordini, R.I., 1947. Los ríos Pilcomayo en la Región del Patiño. Anales Dirección de Minas y Geología, 1, 83.Google Scholar
Darrigran, G., 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biol. Invasions, 4, 145156.CrossRefGoogle Scholar
Darrigran, G., 2010. Summary of the distribution and impact of the golden mussel in Argentina and neighboring countries. In: Claudi, R. and Mackie, G. (eds.), Practical Guide for the Monitoring and Control of Aquatic Invasive Molluscs in Freshwater Systems, Taylor and Francis Group, LLC, CRC Press, Boca Raton, FL, 389396.Google Scholar
Darrigran, G. and Damborenea, C., 2005. A bioinvasion history in South America: Limnoperna fortunei (Dunker, 1857), the golden mussel. Amer. Malac. Bull., 20, 105112.Google Scholar
Darrigran, G. and Damborenea, C., 2006. Aspectos generales vinculados a la prevención y control. In: Darrigran, G. and Damborenea, C. (eds.), Bioinvasión del mejillón dorado en el continente americano, Edulp, La Plata, 153165.Google Scholar
Darrigran, G. and Damborenea, C., 2011. Ecosystem engineering impact of Limnoperna fortunei in South America. Zool. Sci., 28, 17.CrossRefGoogle ScholarPubMed
Darrigran, G. and Ezcurra de Drago, I., 2000. Invasion of the exotic freshwater mussel Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) in South America. Nautilus, 114, 6973.Google Scholar
Darrigran, G.A. and Pastorino, G., 2004. Distribution of the golden mussel Limnoperna fortunei (Dunker, 1857) (Family Myilidae) after 10 years invading. Am. J. Conch. Spec. Publ., 3, 95101.Google Scholar
Darrigran, G., Damborenea, C., Penchaszadeh, P. and Taraborelli, C., 2003. Adjustment of Limnoperna fortunei (Bivalvia: Mytilidae) after ten years of invasion in the Americas. J. Shellfish Res., 22, 141146.Google Scholar
Darrigran, G., Maroñas, M. and Colautti, D., 2004. Air exposure as a control mechanism for the “golden mussel” Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae). J. Fresh Ecol., 19, 461464.CrossRefGoogle Scholar
Darrigran, G., Damborenea, C. and Greco, N., 2007. Freshwater invasive bivalves in man-made environments: a case study of larvae biology of Limnoperna fortunei in a Hydroelectric Power Plant in South America. Ambio, 36, 575579.CrossRefGoogle Scholar
Davis, M.A., 1999. Invasion Biology, Oxford University Press, New York, 244 p.Google Scholar
Deaton, L., Derby, J., Subhedar, N. and Greenberg, M., 1989. Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. J. Exp. Mar. Biol. Ecol., 133, 6779.CrossRefGoogle Scholar
dos Santos, C.P., Mansur, M.C.D. and Würdig, N.L., 2008. Variações no comprimento dos indivíduos de uma população do mexilhão dourado, Limnoperna fortunei (Mollusca: Bivalvia: Mytilidae), ao longo do ano, na Praia do Veludo, Lago Guaíba, Rio Grande do Sul, Brasil. Rev. Bras. Zool., 25, 389396.Google Scholar
Drago, E.C. and Amsler, M.L., 1988. Suspended sediment at a cross section of the Middle Paraná River: concentration, granulometry and influence of the main tributaries. Sediment Budgets IAHS Publ., 174, 381396.Google Scholar
Drago, E.C. and Paira, A., 1997. Situación geohidrográfica del río Salado del Norte y estructura física de los principales subcuencas de su tramo inferior. In: Drago, E.C. (ed.), Conservación y manejo de ecosistemas acuáticos continentales: contaminación y acuacultura, Proyecto PID-BID (Período 1993–1996), Instituto Nac. de Limnología (INALI-CONICET), Santo Tomé, 1269.Google Scholar
Drago, E.C. and Quirós, R., 1996. The hydrochemistry of the inland waters of Argentina: a review. Int. J. Salt Lake Res., 4, 315325.CrossRefGoogle Scholar
Emerton, L. and Howard, G., 2008. A Toolkit for the Economic Analysis of Invasive Species, Global Invasive Species Programme, Nairobi, 100 p.
EVARSA, 2000. Estadística hidrológica del Siglo XX, República Argentina, Evaluación de Recursos S. A. (EVARSA), Buenos Aires, 291 p.
Ezcurra de Drago, I., Montalto, L. and Oliveros, O., 2006. Desarrollo y ecología larval de Limnoperna fortunei. In: Darrigran, G. and Damborenea, C. (eds.), Bioinvasión del mejillón dorado en el continente americano, Edulp, La Plata, 8391.Google Scholar
Frissel, C.A., Warren, W.J. and Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manage., 10, 199214.CrossRefGoogle Scholar
Gonçalves, A.M.M., Castro, B.B., Pardal, M.A. and Gonçalves, F., 2007. Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann. Limnol. - Int. J. Lim., 43, 1320.CrossRefGoogle Scholar
Goniadzki, D., Vila, D., Uriburu, M., Almeira, G., Calvo, D. and Rodríguez, D., 2007. Río Pilcomayo, Informe de situación por crecida extraordinaria, Instituto Nacional del Agua (INA), Buenos Aires, 5 p.Google Scholar
Haines, A., Finlayson, B. and McMahon, T.A., 1988. A global classification of river regimes. Appl. Geography, 8, 255272.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 9 p.Google Scholar
IUCN, 2000. Guidelines for the prevention of biodiversity loss caused by alien invasive species, 51st Meeting IUCN Council, Gland.
Karatayev, A.Y., Padilla, D.K., Minchin, D., Boltovskoy, D. and Burlakova, L.E., 2007a. Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biol. Invasions, 9, 161180.CrossRefGoogle Scholar
Karatayev, A.Y., Boltovskoy, D., Padilla, D.K. and Burlakova, L.E., 2007b. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. J. Shellfish Res., 26, 205213.CrossRefGoogle Scholar
Kluza, D.A. and McNyset, K.M., 2005. Ecological niche modeling of aquatic invasive species. Aquat. Invaders, 16, 17.Google Scholar
MacIsaac, H.J., Grigorovich, I.K. and Ricciardi, A., 2001. Reassessment of species invasions concepts: the Great Lakes basin as a model. Biol. Invasions, 3, 405416.CrossRefGoogle Scholar
Marçal, S.F. and Callil, C.T., 2008. Structure of invertebrates community associated with Eichhornia crassipes Mart. (Solms-Laubach) after the introduction of Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae) in the Upper Paraguay River, MT, Brazil. Acta Limnol. Bras., 20, 359371.Google Scholar
Marco, D., Páez, S. and Cannas, S., 2002. Species invasiveness in biological invasion: a modeling approach. Biol. Invasions, 4, 193205.CrossRefGoogle Scholar
Martín Vide, J.P., Amarilla, M., Gamarra, M. and Zárate, F., 2007. Problema de sedimentación en el río Pilcomayo. In: Memorias III Simposio Regional sobre Hidráulica de Ríos, Córdoba, 10.
McGill, B.J., Etienne, R.S., Gray, J.S., Marti, D.A., Anderson, J., Benecha, H.K., Dornelas, M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E., Marquet, P.A., Maurer, B.A., Ostling, A., Soykan, C.U., Ugland, K.I. and White, E.P., 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10, 9951015.CrossRefGoogle ScholarPubMed
Montalto, L. and Ezcurra de Drago, I., 2003. Tolerance to desiccation of an invasive mussel, Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae), under experimental conditions. Hydrobiologia, 498, 161167.CrossRefGoogle Scholar
Morton, B., 1977. The population dynamics of Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilacea) in Plover Cove Reservoir, Hong Kong. Malacologia, 16, 165182.Google Scholar
Oliveira, M.D., Takeda, A.M., Barros, L.F., Barbosa, D.S. and Resende, E.K., 2006. Invasion by Limnoperna fortunei (Dunker, 1857) (Bivalvia Mytilidae) of the Pantanal wetland, Brazil. Biol. Invasions, 8, 97104.CrossRefGoogle Scholar
Oliveira, M., Hamilton, S. and Jacobi, C., 2010a. Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquat. Invasions, 5, 5973.CrossRefGoogle Scholar
Oliveira, M.D., Hamilton, S.K., Calheiros, D.F. and Jacobi, C.M., 2010b. Oxygen depletion events control the invasive golden mussel (Limnoperna fortunei) in a Tropical Floodplain. Wetlands, 30, 705716.CrossRefGoogle Scholar
Oliveira, M.D., Calheiros, D.F., Jacobi, C.M. and Hamilton, S.K., 2011. Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei. Biol. Invasions, 13, 717729.CrossRefGoogle Scholar
Orenzans, J., Schwindt, E., Pastorino, G., Bortulus, A., Casas, G., Darrigran, G., Elias, R., Lopez Gappa, J.J., Obenet, S., Pascual, M., Penchaszadeh, P., Piriz, M.L., Sacarbino, F., Spivak, E.D. and Vallarino, E.A., 2002. No longer a pristine confine of the World Ocean – A survey of exotic marine species in the Southwestern Atlantic. Biol. Invasions, 4, 115143.CrossRefGoogle Scholar
Pastorino, G., Darrigran, G.A., Martin, S.M. and Lunaschi, L., 1993. Limnoperna fortunei (Dunker, 1857) (Mytilidae), nuevo Bivalvo invasor en aguasdel Río de la Plata. Neotropica, 39, 34.Google Scholar
Peterson, A.T. and Vieglais, D.A., 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience, 51, 363371.CrossRefGoogle Scholar
Poff, N.L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North. Am. Benthol. Soc., 16, 391409.CrossRefGoogle Scholar
Rahel, F.J., 2002. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst., 33, 291315.CrossRefGoogle Scholar
Ramcharan, C.W., Padilla, D.K. and Dodson, S.I., 1992. Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Can. J. Fish. Aquat. Sci., 49, 26112620.CrossRefGoogle Scholar
Ricciardi, A., 1998. Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling, 13, 97106.CrossRefGoogle Scholar
Roche, M.A., Guyot, J.L., Calle, H., Cortes, J., Pereira, M. and Rodriguez, H., 1989. Erosión, balance de sedimentos y materias disueltas en la cuenca alta del río Paraguay (ríos Pilcomayo y Bermejo, Bolivia). In: IV Congreso Nacional de Ingeniería Sanitaria y Ambiental, Simposio sobre preservación del medio ambiente, La Paz, 1530.Google Scholar
Soldano, F.A., 1947. Régimen y aprovechamiento de la Red Fluvial Argentina. Parte I: El río Paraná y sus tributarios, Cimera, Buenos Aires, 277 p.Google Scholar
Sousa, R., Antunes, C. and Guilhermino, L., 2006. Factors influencing the occurrence and distribution of Corbicula fluminea (Müller, 1774) in the River Lima estuary. Ann. Limnol. - Int. J. Lim., 42, 165171.CrossRefGoogle Scholar
Sprung, M., 1987. Ecological requirements of developing Dreissena polymorpha eggs. Archiv. Hydrobiol. Suppl., 79, 6986.Google Scholar
UNL, 2005. Vulnerabilidad de los Recursos Hídricos en el Litoral – Mesopotamia T.1. Argentina. Actividades Habilitantes para la 2a Comunicación Nacional del Gobierno de la República Argentina a las partes de la Convención Marco de las Naciones Unidas sobre Cambio Climático, TF 51287/ar, UNL, Facultad de Ingeniería y Ciencias Hídricas. http://aplicaciones.medioambiente.gov.ar/archivos/web/UCC/File/comunicaciones_nacionales/unl_tomo1.pdf.
Vinogradov, G.E., Smirnova, N.F., Sokolov, V.A. and Bruznitsky, A.A., 1993. Influence of chemical composition of the water on the mollusk Dreissena polymorpha. In: Nalepa, T.F. and Schloesser, D.W. (eds.), Zebra Mussel: Biology, Impact, and Control, Lewis Publishers, Boca Raton, FL, 283294.Google Scholar
Williams, W.D., 1981. Inland salt lakes: an introduction. Hydrobiologia, 81/82, 114.CrossRefGoogle Scholar