Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T00:38:26.092Z Has data issue: false hasContentIssue false

Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond

Published online by Cambridge University Press:  26 November 2010

Jan Sychra*
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Zdeněk Adámek
Affiliation:
University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
Karla Petřivalská
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
*
*Corresponding author: [email protected]
Get access

Abstract

Although habitats of hard emergent macrophyte beds, including reed beds (Phragmites australis), are very common in the littoral zones of stagnant waters in central Europe, research investigating their macroinvertebrate communities is still lacking. In this study, the spatial distribution of macroinvertebrates was studied within large reed beds in the littoral zone of a lowland fishpond (Nesyt, SE Moravia, Czech Republic). Using a hand net, horizontal line transects in the reed bed leading from the marginal area with the open water towards the shore were sampled. The results of NMDS ordination and PERMANOVA test proved that the taxonomic composition of the macroinvertebrate assemblage changed significantly along the investigated horizontal transect from the open water towards the shore, together with gradual changes in some environmental factors. The taxa diversity was found to be the highest in the areas closest to the shore. In the reed bed areas near open water, corixids, aquatic insects larvae, leeches, water mites, some naidids and tubificids, which represented free-swimming invertebrates with tracheal gill breathing, ectoparasites, gatherers/collectors and taxa preferring pelal and inorganic substrates, were more abundant compared with the interiors of reed beds. On the other side, in the shallow dense interior of reed beds close to the shore, gastropods, water slaters, some naidids and enchytraeids, aquatic beetles and dipteran larvae were characteristic taxa, which belonged especially to grazers and scrapers, shredders and invertebrates preferring phytal and POM (particulate organic matter) microhabitats. Different predators were recorded in areas near open water and near the shore. This invertebrate spatial distribution probably reflects changes in microhabitat and environmental conditions along the investigated horizontal transect. The results of this study proved that extensive reed beds serve as refuges for many groups of aquatic macroinvertebrates within lowland fishpond ecosystems.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology , 26, 3246.Google Scholar
AQEM consortium, 2008. ASTERICS: AQEM/STAR Ecological River Classification System, Version 3.1.1, http://www.fliessgewaesserbewertung.de/download/berechnung/.
Bazzanti, M., Della Bella, V. and Grezzi, F., 2009. Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): Influence of water permanence and mesohabitat type. Ann. Limnol. - Int. J. Lim. , 45, 2939.CrossRefGoogle Scholar
Bronmark, C. and Vermaat, J.E., 1998. Complex fish–snail–epiphyton interactions and their effects on submerged freshwater macrophytes. In: Jeppesen, E., Søndergaard, M., Søndergaard, M. and Christoffersen, K. (eds.), The structuring role of submerged macrophytes in lakes, Spinger-Verlag, New York, 4768.CrossRefGoogle Scholar
Burton, T.M., Uzarski, D.G. and Genet, J.A., 2004. Invertebrate habitat use in relation to fetch and plant zonation in northern Lake Huron coastal wetlands. Aquat. Ecosyst. Health , 7, 249267.CrossRefGoogle Scholar
Chapman, L.J., Schneider, K.R., Apodaca, C. and Chapman, C.A., 2004. Respiratory ecology of macroinvertebrates in a swamp–river system of east Africa. Biotropica , 36, 572585.Google Scholar
Colon-Gaud, J.C., Kelso, W.E. and Rutherford, D.A., 2004. Spatial distribution of macroinvertebrates inhabiting Hydrilla and coontail beds in the Atchafalaya basin, Louisiana. J. Aquat. Plant Manage. , 42, 8591.Google Scholar
Cox, T.F. and Cox, M.A.A., 2001. Multidimensional Scaling, Chapman and Hall.
Cyr, H. and Downing, J.A., 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can. J. Fish Aquat. Sci. , 45, 976984.CrossRefGoogle Scholar
Diehl, S. and Kornijów, R., 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebates. In: Jeppesen, E., Søndergaard, M., Søndergaard, M. and Christoffersen, K. (eds.), The structuring role of submerged macrophytes in lakes, Springer-Verlag, New York, 2446.CrossRefGoogle Scholar
Dvořák, J., 1970. Horizontal zonation of macrovegetation, water properties and macrofauna in a littoral stand of Glyceria aquatica in a pond in South Bohemia. Hydrobiologia , 35, 1730.CrossRefGoogle Scholar
Dvořák, J. and Best, E.P.H., 1982. Macro-invertebrate communities associated with macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia , 95, 115126.CrossRefGoogle Scholar
Dvořák, J. and Imhof, G., 1998. The role of animals and animal communities in wetlands. In: Westlake, D.F., Květ, J. and Szczepański, A. (eds.), The Production Ecology of Wetlands, The IBP Synthesis, Cambridge University Press, Cambridge, 211318.Google Scholar
Dykyjová, D. and Květ, J. (eds.), 1978. Pond Littoral Ecosystems, Structure and Functioning, Ecological Studies, 28 , Springer-Verlag, Berlin-Heidelberg-New York, 464 p.CrossRefGoogle Scholar
García-Criado, F. and Trigal, C., 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia , 545, 103115.CrossRefGoogle Scholar
Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology , 65, 455468.CrossRefGoogle Scholar
Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia , 418, 229242.CrossRefGoogle Scholar
Hejný, S., 1971. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiologia (Bucuresti) , 12, 7185.Google Scholar
Hejný, S. and Husák, Š., 1978. Higher Plant Communities. In: Dykyjová, D. and Květ, J. (eds.), Pond Littoral Ecosystems, Structure and Functioning, Ecological Studies, 28 , Springer-Verlag, Berlin-Heidelberg-New York, 2364.CrossRefGoogle Scholar
Hinden, H., Oertli, B., Menetrey, N., Sager, L. and Lachavanne, J.B., 2005. Alpine pond biodiversity: what are the related environmental variables? Aquatic Conserv.: Mar. Freshw. Ecosyst. , 15, 613624.CrossRefGoogle Scholar
Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. , 6, 6570.Google Scholar
Hufnagel, L., Bakonyi, G. and Vásárhelyi, T., 1999. New approach for habitat characterization based on species lists of aquatic and semiaquatic bugs. Environ. Monit. Assess. , 58, 305316.CrossRefGoogle Scholar
James, M.R., Weatherhead, M.A., Stanger, C. and Graynoth, E., 1988. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand – effects of habitat stability, wind exposure and macrophytes. N. Z. J. Mar. Freshwat. Res. , 32, 287305.CrossRefGoogle Scholar
Jayawardana, J.M.C.K., Westbrooke, M., Wilson, M. and Hurst, C., 2006. Macroinvertebrate communities in Phragmites australis (Cav.) Trin. ex Steud. reed beds and open bank habitats in central Victorian streams in Australia. Hydrobiologia , 568, 169185.CrossRefGoogle Scholar
Kuflikowski, T., 1970. Fauna in vegetation in carp ponds at Goczalkowice. Acta Hydrobiol. , 12, 439456.Google Scholar
Kuflikowski, T., 1977. Macrophytes and phytophilous macrofauna of the pond Zimowy Wielki at Golysz. Acta Hydrobiol. , 19, 413422.Google Scholar
Learner, M.A., Lochhead, G. and Hughes, B.D., 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshwater Biol. , 8, 357375.CrossRefGoogle Scholar
Lodge, D.M., 1985. Macrophyte – gastropod associations: observations and experiments on macrophyte choice by gastropods. Freshwater Biol. , 15, 695708.CrossRefGoogle Scholar
Löhlein, B., 1996. Seasonal dynamics of aufwuchs Naididae (Oligochaeta) on Phragmites australis in a eutrophic lake. Hydrobiologia , 334, 115123.CrossRefGoogle Scholar
Matlak, O., 1963. The appearance of invertebrates on aquatic plants in fish-ponds. Acta Hydrobiol. , 5, 130.Google Scholar
McArdle, B.H. and Anderson, M.J., 2001. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology , 82, 290297.CrossRefGoogle Scholar
Menetrey, N., Oertli, B., Sartori, M. and Wagner, A., 2008. Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia , 597, 125135.CrossRefGoogle Scholar
Nagell, B. and Fagerström, T., 1978. Adaptation and resistance to anoxia in Cloeon dipterum (Ephemeroptera) and Nemoura cinerea (Plecoptera). Oikos , 30, 9599.CrossRefGoogle Scholar
Nilsson, A.N., Elmberg, J. and Sjöberg, K., 1994. Abundance and species richness patterns of diving beetles (Coleoptera, Dytiscidae) in Swedish lakes. J. Biogeogr. , 21, 197206.CrossRefGoogle Scholar
O'Connor, A., Bradish, S., Reed, T., Moran, J., Regan, E., Visser, M., Gormally, M. and Skeffington, M.S., 2004. A comparison of the efficacy of pond-net and box sampling methods in turloughs – Irish ephemeral aquatic systems. Hydrobiologia , 524, 133144.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H., 2010. vegan: Community Ecology Package, R package version 1.17–2, http://CRAN.R-project.org/package=vegan.
Ondok, J.P., 1978. Radiation Climate in Fishpond Littoral Plant Communities. In: Dykyjová, D. and Květ, J. (eds.), Pond Littoral Ecosystems, Structure and Functioning, Ecological Studies, 28 , Springer-Verlag, Berlin-Heidelberg-New York, 113125.CrossRefGoogle Scholar
Pelikán, J., Hudec, K. and Šťastný, K., 1978. Animal Populations in Fishpond Littorals. In: Dykyjová, D. and Květ, J. (eds.), Pond Littoral Ecosystems, Structure and Functioning, Ecological Studies, 28 , Springer-Verlag, Berlin-Heidelberg-New York, 7479.CrossRefGoogle Scholar
Peres-Neto, P.R. and Jackson, D.A., 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia , 129, 169178.CrossRefGoogle Scholar
Petr, T., 2000. Interactions between fish and aquatic macrophytes in inland waters. A review. FAO Fisheries Technical Paper, no 396, FAO, Rome.
Pieczyńska, E., 1972. Ecology of eulittoral zone of lakes. Ekologia Polska , 20, 637732.Google Scholar
R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R–project.org.PubMed
Ritterbusch, D., 2007. Growth patterns of reed (Phragmites australis): the development of reed stands in carp ponds. Aquacult. Int. , 15, 191199.CrossRefGoogle Scholar
Smith, I. and Oliver, D., 1986. Review of parasitic associations of larval water mites (Acari: Parasitogona: Hydrachnida) with insect hosts. Can. Entomol. , 118, 407472.CrossRefGoogle Scholar
Soszka, G.J., 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologia Polska , 23, 393415.Google Scholar
StatSoft, Inc., 2008. Statistica (data analysis software system), version 8.0, http://www.statsoft.com.
Sychra, J. and Adámek, Z., 2010. Sampling efficiency of Gerking sampler and sweep net in pond emergent littoral macrophyte beds. Turkish Journal of Fisheries and Aquatic Sciences , 10, 161167.CrossRefGoogle Scholar
Tate, A.W. and Hershey, A.E., 2003. Selective feeding by larval dytiscids (Coleoptera: Dytiscidae) and effects of fish predation on upper littoral zone macroinvertebrate communities of arctic lakes. Hydrobiologia , 497, 1323.CrossRefGoogle Scholar
Teyrovský, V., 1956. Fotopathie larev klešťanek (Corixinae) [Photopathy of the larvae of Corixinae]. Sborník Vysoké školy pedagogické v Olomouci, Přírodní vědy , 2, 147177.Google Scholar
Tolonen, K.T., Hamalainen, H., Holopainen, I.J. and Karjalainen, J., 2001. Influences of habitat type and environmental variables on littoral macroinvertebrates communities in a large lake system. Arch. Hydrobiol. , 152, 3967.CrossRefGoogle Scholar
Úlehlová, B. and Přibil, S., 1978. Water Chemistry in the Fishpond Littorals. In: Dykyjová, D. and Květ, J. (eds.), Pond Littoral Ecosystems, Structure and Functioning, Ecological Studies, 28 , Springer-Verlag, Berlin-Heidelberg-New York, 126140.CrossRefGoogle Scholar
Varga, I., 2003. Structure and changes of macroinvertebrate community colonizing decomposing rhizome litter of common reed at Lake Fertö/Neusiedler See (Hungary). Hydrobiologia , 506–509, 413420.
Weatherhead, M.A. and James, M.R., 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia , 462, 115129.CrossRefGoogle Scholar
Wróblewski, A., 1958. The Polish species of the genus Micronecta Kirk. (Heteroptera, Corixidae). Ann. Zool. Warszawa , 17, 247382.Google Scholar
Zachwieja, J., 1965. Daily variation of temperature, O2, CO2, pH and alkalinity in the littoral zone of Mamry lake. Polskie Archiwum Hydrobiologii , 13, 527.Google Scholar
Zbikowski, J. and Kobak, J., 2007. Factors influencing taxonomic composition and abundance of macrozoobenthos in extralittoral zone of shallow eutrophic lakes. Hydrobiologia , 584, 145155.CrossRefGoogle Scholar
Supplementary material: PDF

OLM - limn 46(4) 2010 p.281 - Distribution and diversity of littoral ...

Appendix

Download OLM - limn 46(4) 2010 p.281 - Distribution and diversity of littoral ...(PDF)
PDF 48.6 KB