Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:10:05.606Z Has data issue: false hasContentIssue false

Association of nymphs and adults of Ephemeroptera (Insecta) using the amplified fragment length polymorphism (AFLP) technique

Published online by Cambridge University Press:  22 June 2011

Lucimar G. Dias*
Affiliation:
Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Colombia
Tito Bacca
Affiliation:
Facultad de Ciencias Agrícolas, Universidad de Nariño, Torobajo, Pasto, Nariño, Colombia
Lucio Navarro
Affiliation:
Disciplina de Entomología, Cenicafé, Chinchiná, Caldas, Colombia
Flor E. Acevedo
Affiliation:
Disciplina de Entomología, Cenicafé, Chinchiná, Caldas, Colombia
Pablo M. Benavides
Affiliation:
Disciplina de Entomología, Cenicafé, Chinchiná, Caldas, Colombia
Paulo Sérgio Fiuza Ferreira
Affiliation:
Museu de Entomologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, Minas Gerais, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

Many species of Ephemeroptera have been described based on either nymphs or adults. Only 10% of Ephemeroptera species in South America are known in both life stages. The current research was carried out in order to molecularly associate nymphs and adults of Ephemeroptera, using the amplified fragment length polymorphism (AFLP) technique. We obtained molecular fingerprints by the AFLP of five species: Leptohyphes albipennis, Leptohyphes coconuco, Leptohyphes ecuador, Baetodes levis and Prebaetodes sitesi. The association between nymphs and adults of L. albipennis and L. coconuco by this analysis confirmed the effectiveness of the technique. The molecular fingerprints of B. levis and P. sitesi were generated with the hope that future collections of unknown adults would match the fingerprint and solve an identification problem. We describe here for the first time the adult of L. ecuador by matching an adult trapped in the field with the DNA fingerprint of nymphs obtained by means of AFLP.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber-James, H.M., Gattolliat, J.-L., Sartori, M. and Hubbard, M.D., 2008. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia, 595, 339350.CrossRefGoogle Scholar
Benavides, P.M., Vega, F., Stuart, J., Bustillo, A.E.P. and Everson, J.R., 2003. Biodiversity and biogeography of an important inbred pest of coffee, the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae). Ann. Entomol. Soc. Am., 98, 359366.CrossRefGoogle Scholar
Brittain, J.E., 1982. Biology of Mayflies. Annu. Rev. Entomol., 27, 119147.CrossRefGoogle Scholar
Chacón, M.M., Pescador, M.L. and Segnini, S., 2010. The adult and redefinition of the genus Prebaetodes Lugo-Ortiz & McCafferty (Ephemeroptera: Baetidae), with description of a new species from Venezuela. Aquat. Insects, 32, 143157.CrossRefGoogle Scholar
Domínguez, E., Molineri, C., Pescador, M., Hubbard, M.D. and Nieto, C., 2006. Aquatic Biodiversity in Latin America, Ephemeroptera of South America, Pensoft, Sofia-Moscow, vol. 2, 646 p.Google Scholar
Fernández-Cuenca, F., 2004. Aplicaciones de las técnicas de PCR a la epidemiología molecular de las enfermedades infecciosas. Enferm. Infecc. Microbiol. Clin., 22, 355360.CrossRefGoogle Scholar
Fleck, G., Brenk, M. and Misof, B., 2006. DNA Taxonomy and the identification of immature insect stages: the true larva of Tauriphila argo (Hagen 1869) (Odonata: Anisoptera: Libellulidae). Ann. Soc. Entomol. Fr., 42, 9198.CrossRefGoogle Scholar
Grant, P.M., 2001. Mayflies as food. In: Domínguez, E. (ed.), Trends in research in Ephemeroptera and Plecoptera, Kluwer Academic/Plenum Publishers, New York, 107124.CrossRefGoogle Scholar
Jeon, M.-J. and Ahn, K.-J., 2007. Descriptions of late instars of three littoral Cafius species (Coleoptera: Staphylinidae) by association of life stage with DNA sequences. Flor. Entomol., 90, 465474.CrossRefGoogle Scholar
Lugo-Ortiz, C.R. and McCafferty, W.P., 1996. Phylogeny and classification of the Baetodes complex (Ephemeroptera: Baetidae), with description of a new genus. J. N. Am. Benthol. Soc., 15, 367380.CrossRefGoogle Scholar
Mayo, V.K., 1968. Some new mayflies of the subfamily Leptohyphinae (Ephemeroptera: Tricorythidae). Pan- Pacific Entomologist, 44, 301308.Google Scholar
Menetrey, N., Oertli, B., Sartori, M., Wagner, A. and Lachavanne, J.B., 2008. Eutrophication: are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia, 597, 125135.CrossRefGoogle Scholar
Merritt, R.W. and Cummins, K.W., 1996. An introduction to Aquatic Insects of North America, third edn., Kendall/Hunt Publishing Company, Dubuque, 862 p.Google Scholar
Meudt, H.M. and Clarke, A.C., 2007. Almost Forgotten or Latest Practice? AFLP applications, analyses and advances. Trends Plant Sci., 12, 106117.CrossRefGoogle ScholarPubMed
Miller, K.B., Alarie, Y., Wolfe, G.W. and Whiting, M.F., 2005. Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae). Syst. Entomol., 30, 499509.CrossRefGoogle Scholar
Miller, K.B., Alarie, Y. and Whiting, M.F., 2007. Description of the larva of Notaticus fasciatus (Coleoptera: Dytiscidae) associated with adults using DNA sequence data. Ann. Entomol. Soc. Am., 100, 787797.CrossRefGoogle Scholar
Molineri, C., 2003. Revision of the South American species of Leptohyphes (Ephemeroptera: Leptohyphidae) with a key for the nymphs. Stud. Neotrop. Fauna Environ., 38, 4770.CrossRefGoogle Scholar
Molineri, C. and Zúñiga, M.C., 2006. New species of Leptohyphidae (Insecta: Ephemeroptera) from Colombia with evidence of reproductive time segregation. Stud. Neotrop. Fauna Environ., 41, 139151.CrossRefGoogle Scholar
Najimi, B., Boukhatem, N., El Jaafari, S., Jlibène, M., Paul, R. and Jacquemin, J.-M., 2002. Amplified fragment length polymorphism (AFLP) analysis of markers associated with H5 and H22 Hessian fly resistance genes in bread wheat. Biotechnol. Agron. Soc. Environ., 6, 7985.Google Scholar
Nieto, C., 2004. The genus Baetodes (Ephemeroptera: Baetidae) in South America with the description of new species from Argentina, Bolivia and Peru. Stud. Neotrop. Fauna Environ., 39, 6379.CrossRefGoogle Scholar
Resh, V.H. and Jackson, J.K., 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg, D.M. and Resh, V.H. (eds.), Freshwater biomonitoring and benthic macroinvertebrates, Chapman and Hall, V. H., New York, 159194.Google Scholar
Stark, B., Froehlich, C. and Zuñiga, M.C., 2009. South American Stoneflies (Plecoptera), Aquatic Biodiversity in Latin America, Pensoft, Sofia, Vol. 5, 154 p.Google Scholar
Suinaga, F.A., Casali, V.W.D., Picanço, M. and Foster, J., 2004. Genetic divergence among tomato leafminer populations based on AFLP analysis. Pesq. Agropec. Bras., 39, 645651.CrossRefGoogle Scholar
Swofford, D.L., 1998. Phylogenetic analysis using parsimony computer program, version 4, D. L. Swofford, Sunderland, MA.Google Scholar
Zhong, M., McCarty, J.C., Jenkins, J.N. and Saha, S., 2002. Assessment of day-neutral backcross populations of cotton using AFLP markers. J. Cotton Sci., 6, 97103.Google Scholar