Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Jing, L.
Dewanckele, L.
Vlaeminck, B.
Van Straalen, W.M.
Koopmans, A.
and
Fievez, V.
2018.
Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators.
Journal of Dairy Science,
Vol. 101,
Issue. 11,
p.
9827.
Tullo, Emanuela
Finzi, Alberto
and
Guarino, Marcella
2019.
Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy.
Science of The Total Environment,
Vol. 650,
Issue. ,
p.
2751.
Televicius, Mindaugas
Juozaitinene, Vida
Malasauskiene, Dovile
Rutkauskas, Arunas
and
Antanaitis, Ramunas
2019.
Effects of a monensin controlled release capsule on reticulorumen temperature and pH determined using real-time monitoring in fresh dairy cows.
Veterinární medicína,
Vol. 64,
Issue. 6,
p.
245.
Yuste, S.
Amanzougarene, Z.
de la Fuente, G.
de Vega, A.
and
Fondevila, M.
2019.
Rumen protozoal dynamics during the transition from milk/grass to high-concentrate based diet in beef calves as affected by the addition of tannins or medium-chain fatty acids.
Animal Feed Science and Technology,
Vol. 257,
Issue. ,
p.
114273.
Mensching, André
Zschiesche, Marleen
Hummel, Jürgen
Schmitt, Armin Otto
Grelet, Clément
and
Sharifi, Ahmad Reza
2020.
An Innovative Concept for a Multivariate Plausibility Assessment of Simultaneously Recorded Data.
Animals,
Vol. 10,
Issue. 8,
p.
1412.
Zschiesche, Marleen
Mensching, André
Sharifi, A. Reza
and
Hummel, Jürgen
2020.
The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis.
Dairy,
Vol. 1,
Issue. 3,
p.
259.
Dijkstra, J.
van Gastelen, S.
Dieho, K.
Nichols, K.
and
Bannink, A.
2020.
Review: Rumen sensors: data and interpretation for key rumen metabolic processes.
Animal,
Vol. 14,
Issue. ,
p.
s176.
Villot, C.
Martin, C.
Bodin, J.
Durand, D.
Graulet, B.
Ferlay, A.
Mialon, M.M.
Trevisi, E.
and
Silberberg, M.
2020.
Combinations of non-invasive indicators to detect dairy cows submitted to high-starch-diet challenge.
Animal,
Vol. 14,
Issue. 2,
p.
388.
Wagner, Nicolas
Antoine, Violaine
Mialon, Marie-Madeleine
Lardy, Romain
Silberberg, Mathieu
Koko, Jonas
and
Veissier, Isabelle
2020.
Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal acidosis.
Computers and Electronics in Agriculture,
Vol. 170,
Issue. ,
p.
105233.
Mensching, A.
Bünemann, K.
Meyer, U.
von Soosten, D.
Hummel, J.
Schmitt, A.O.
Sharifi, A.R.
and
Dänicke, S.
2020.
Modeling reticular and ventral ruminal pH of lactating dairy cows using ingestion and rumination behavior.
Journal of Dairy Science,
Vol. 103,
Issue. 8,
p.
7260.
Wanapat, Metha
Viennasay, Bounnaxay
Matra, Maharach
Totakul, Pajaree
Phesatcha, Burarat
Ampapon, Thiwakorn
and
Wanapat, Sadudee
2021.
Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis.
Journal of the Science of Food and Agriculture,
Vol. 101,
Issue. 11,
p.
4543.
Stachowicz, Joanna
and
Umstätter, Christina
2021.
Do we automatically detect health- or general welfare-related issues? A framework.
Proceedings of the Royal Society B: Biological Sciences,
Vol. 288,
Issue. 1950,
Wagner, Nicolas
Mialon, Marie-Madeleine
Sloth, Karen Helle
Lardy, Romain
Ledoux, Dorothée
Silberberg, Mathieu
de Boyer des Roches, Alice
and
Veissier, Isabelle
2021.
Detection of changes in the circadian rhythm of cattle in relation to disease, stress, and reproductive events.
Methods,
Vol. 186,
Issue. ,
p.
14.
Dunière, Lysiane
Esparteiro, Damien
Lebbaoui, Yacine
Ruiz, Philippe
Bernard, Mickael
Thomas, Agnès
Durand, Denys
Forano, Evelyne
and
Chaucheyras-Durand, Frédérique
2021.
Changes in Digestive Microbiota, Rumen Fermentations and Oxidative Stress around Parturition Are Alleviated by Live Yeast Feed Supplementation to Gestating Ewes.
Journal of Fungi,
Vol. 7,
Issue. 6,
p.
447.
Kim, Dae Hyun
Ha, Jae Jung
Yi, Jun Koo
Kim, Byung Ki
Kwon, Woo-Sung
Ye, Bong-Hae
Kim, Seung Ho
and
Lee, Yoonseok
2021.
Differences in ruminal temperature between pregnant and non-pregnant Korean cattle.
Journal of Animal Reproduction and Biotechnology,
Vol. 36,
Issue. 1,
p.
45.
Mensching, A.
Zschiesche, M.
Hummel, J.
Grelet, C.
Gengler, N.
Dänicke, S.
and
Sharifi, A.R.
2021.
Development of a subacute ruminal acidosis risk score and its prediction using milk mid-infrared spectra in early-lactation cows.
Journal of Dairy Science,
Vol. 104,
Issue. 4,
p.
4615.
Fury Mottram, Toby Trevor
and
den Uijl, Ingrid
2022.
Digital Agritechnology.
p.
113.
Heirbaut, S.
Børge Jensen, D.
Jing, X.P.
Stefańska, B.
Lutakome, P.
Vandaele, L.
and
Fievez, V.
2022.
Different reticuloruminal pH metrics of high-yielding dairy cattle during the transition period in relation to metabolic health, activity, and feed intake.
Journal of Dairy Science,
Vol. 105,
Issue. 8,
p.
6880.
Lardy, R.
Mialon, M.-M.
Wagner, N.
Gaudron, Y.
Meunier, B.
Helle Sloth, K.
Ledoux, D.
Silberberg, M.
de Boyer des Roches, A.
Ruin, Q.
Bouchon, M.
Cirié, C.
Antoine, V.
Koko, J.
and
Veissier, I.
2022.
Understanding anomalies in animal behaviour: data on cow activity in relation to health and welfare.
Animal - Open Space,
Vol. 1,
Issue. 1,
p.
100004.
Hajnal, Éva
Kovács, Levente
and
Vakulya, Gergely
2022.
Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods.
Sensors,
Vol. 22,
Issue. 18,
p.
6812.