Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T19:02:41.492Z Has data issue: false hasContentIssue false

Lippia gracilis Schauer essential oil as a growth promoter for Japanese quail

Published online by Cambridge University Press:  29 April 2020

G. F. Rocha
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
A. P. Del Vesco
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
T. P. Santana
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
T. S. Santos
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
A. S. Cerqueira
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
V. T. Zancanela
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
R. P. M. Fernandes
Affiliation:
Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
G. M. Oliveira Júnior*
Affiliation:
Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Sergipe49100-000, São Cristó vão, Brazil
*
Get access

Abstract

The use of antibiotics as performance enhancers in animal feeding is declining, so Lippia gracilis Schauer essential oil (LGSEO) could be used as a potential substitute for the conventionally used growth promoters. The LGSEO contains components such as carvacrol and thymol, which kill and/or control pathogenic bacteria, increase population of beneficial organisms, act against oxidative processes and onto nutrient digestibility and absorption. The aim of this study was to investigate the action and the effects of LGSEO as a growth promoter in the diet of Japanese quail by examining their productive performance, intestinal microbiology, blood biochemical parameters, hepatic thiobarbituric acid reactive substances (TBARS) content and intestinal gene expression. A total of 252 two-day-old quail (Coturnix coturnix japonica) were assigned to 3 treatments in 7 replicates, using 12 birds per experimental unit. The treatments consisted of a basal diet, basal diet + LGSEO at 400 mg/kg of diet and basal diet + chemical antimicrobial (bacitracin methylene disalicylate) at 500 mg/kg of diet. The experimental period was 34 days. The highest feed intake (P < 0.01) was found in the group receiving the conventional antimicrobial, whereas the best feed conversion (P < 0.01) was shown by the animals receiving LGSEO. Escherichia coli growth was restricted in the quail receiving the growth promoters. Salmonella spp. growth was controlled by the treatment containing the conventional antimicrobial. There was no difference between the treatments (P > 0.05) for the concentration of aspartate aminotransferase and alanine aminotransferase enzymes in the blood or hepatic TBARS content. Birds receiving negative-control treatment exhibited a higher expression of sodium-glucose cotransporter (SGLT1), while those receiving the treatment with essential oil showed lower catalase (CAT) and glutathione peroxidase (GPX7) expressions compared to the conventional antimicrobial and control groups, respectively. Lippia gracilis Schauer essential oil is a powerful performance enhancer for Japanese quail by virtue of its abilities to improve their intestinal environment, balance the microbial population and reduce energy expenditure for oxidative processes.

Type
Research Article
Copyright
© The Animal Consortium 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Departamento de Zootecnia, Universidade Federal de Sergipe, Av. Marechal Rondon, 49100-000, São Cristó vão, Sergipe, Brazil.

References

Alberto, E, Nascimento, V and Braga, A 2010. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. Journal of the Brazilian Chemical Society 21, 20322041.CrossRefGoogle Scholar
Araújo, JR and Martel, F 2009. Regulação da Absorção Intestinal de Glicose. Arquivos de Medicina 23, 3543.Google Scholar
Barbosa, AA, Mülle, ES, Moraes, GHK, Umigi, RT, Barreto, SLT and Ferreira, RM 2010. Perfil da aspartato aminotransferase e alanina aminotransferase e biometria do fígado de codornas japonesas. Revista Brasileira de Zootecnia 39, 308312.CrossRefGoogle Scholar
Barreiros, ALBS, David, JM and David, JP 2006. Estresse oxidativo: relação entre gerações de espécies reativas e defesa do organismo. Quimíca Nova 29, 113123.CrossRefGoogle Scholar
Bona, T, Pickler, L, Miglino, LB, Kuritza, LN, Vasconcelos, SP and Santin, E 2012. Óleo essencial de orégano, alecrim, canela e extrato de pimenta no controle de Salmonella, Eimeria e Clostridium em frangos de corte. Pesquisa Veterinária Brasileira 32, 411418.CrossRefGoogle Scholar
Bradford, MM 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Brasil, Ministério da Agricultura Pecuária e Abastecimento. Instrução normativa nº 3, de 17 de janeiro de 2000. Regulamento Técnico de Métodos de Insensibilização para Abate Humanitário de Animais de Açougue. Seção 1-14. Diário Oficial da República Federativa do Brasil, Brasília, Brazil.Google Scholar
Brazilian Tables for Poultry and Swine 2011. Food Composition and Nutritional Requirements, volume 1, 3rd edition. Imprensa Universitária, Viçosa, Minas Gerais, Brazil.Google Scholar
Brenes, A and Roura, E 2010. Essential oils in poultry nutrition: main effects and modes of action. Animal Feed Science Technology 158, 114.CrossRefGoogle Scholar
Buege, JA and Aust, SD 1978. Microsomal lipid peroxidation. Methods in Enzymology 52, 302310.CrossRefGoogle ScholarPubMed
Burt, S 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology 94, 223253.CrossRefGoogle ScholarPubMed
Cardoso-Júnior, GS 2017. Óleo essencial de alecrim da chapada (Lippia gracilis schauer) em dietas de codornas japonesas em crescimento. PhD thesis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.Google Scholar
Clinical and Laboratory Standards Institute 2015. Performance standard for antibacterial susceptibility testing; twenty-fifth informational supplement. M100-S25. Retrieved on 24 July 2019 from http://file.qums.ac.ir/repository/mmrc/CLSI2015.pdfGoogle Scholar
Dantas, LIS, Araujo, GM, Ribeiro, NM, Andrade, VS, Oliveira, FFM, Albuquerque, CC and Rocha, FAG 2015. Antibacterial potential of Lippia Gracilis Schauer essential oil against a Salmonella sp. strain isolated in Tilápia Fillet-fish (Oreochromis Niloticus). International Journal of Scientific Research 4, 500503.Google Scholar
Dias, GEA, Carvalho, BO, Gomes, AVC, Medeiros, PTC, Sousa, FDR, Souza, MMS and Lima, CAR 2015. Óleo essencial de orégano (Origanum vulgare L.) na dieta de frangos de corte como equilibrador da microbiota intestinal. Revista Brasileira de Medicina Veterinária 37, 108114.Google Scholar
Dorman, HJD and Deans, SG 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88, 308316.CrossRefGoogle ScholarPubMed
El-Hack, MEA, Aahgoub, SA, Alagawany, M and Dharma, K 2015. Influences of dietary supplementation of antimicrobial cold pressed oils mixture on growth performance and intestinal microflora of growing Japanese quails. International Journal Pharmacology 11, 689696.Google Scholar
Figueira, SV, Mota, BP, Leonídio, ARA, Nascimento, GM and Andrade, MA 2014. Microbiota intestinal das aves de produção. Enciclopédia biosfera 10, 21812208.Google Scholar
Harr, KE 2002. Clinical chemistry of companion avian species: a review. Veterinary Clinical Pathology 31, 140151.CrossRefGoogle ScholarPubMed
Hashemipour, H, Kermanshahi, H, Golian, A and Veldkamp, T 2013. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science 92, 20592069.CrossRefGoogle ScholarPubMed
Jang, IS, Ko, YH, Kang, SY and Lee, CY 2007. Effect of commercial essential oils on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Animal Feed Science Technology 134, 304315.CrossRefGoogle Scholar
Jensen, C, Engberg, R, Jakobsen, K, Skibsted, LH and Bertelsen, G 1997. Influence of the oxidative quality of dietary oil on broiler meat storage stability. Meat Science 47, 211222.CrossRefGoogle ScholarPubMed
Jordão Filho, J, Silva, JHV, Santos, RA, Gomes, VDS, Melo, TS, Brito, JMF and Silva, JF 2017. Suplementação de prebiótico (manoligossacarídeo) na dieta de dois genótipos de codornas em crescimento. Arquivos de Ciências Veterinárias e Zoologia 20, 135141.Google Scholar
Koivula, MJ and Eeva, T 2010. Metal-related oxidative stress in birds. Environmental Pollution 158, 23592370.CrossRefGoogle ScholarPubMed
Koiyama, NTG, Rosa, AP, Padilha, MTS, Boemo, LS, Scher, A, Melo, MAS and Fernandes, MO 2014. Desempenho e rendimento de carcaça de frangos de corte alimentados com mistura de aditivos fitogênicos na dieta. Pesquisa Agropecuária Brasileira 49,225231.CrossRefGoogle Scholar
Lima, RK and Cardoso, MG 2007. Família Lamiaceae: Importantes Óleos Essenciais com Ação Biológica e Antioxidante. Revista Fitos 3, 1424.Google Scholar
Magwa, ML, Gundidza, M, Gwerua, N, Humphrey, G 2006. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. Journal of Ethnopharmacology 103, 8589.CrossRefGoogle ScholarPubMed
Pereira, CAM and Maia, JF 2007. Estudo da atividade antioxidante do extrato e do óleo essencial obtidos das folhas de alfavaca (Ocimum gratissimum L.). Ciência e Tecnologia de Alimentos 27,624632.CrossRefGoogle Scholar
Polat, U, Yesilbag, D and Eren, M 2011. Serum biochemical profile of broiler chickens fed diets containing rosemary and rosemary volatile oil. Journal of Biodiversity and Environmental Sciences 5, 2330.Google Scholar
Rizzo, PV, Menten, JFM, Racanicci, AMC, Traldi, AB, Silva, CS and Pereira, PWZ 2010. Extratos vegetais em dietas para frangos de corte. Revista Brasileira de Zootecnia 39, 801807.CrossRefGoogle Scholar
Rocha, GF 2018. Óleo essencial de alecrim (Lippia gracilis Schauer) sobre o desempenho e a expressão gênica de codornas japonesas. PhD thesis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.Google Scholar
Santana, TP, Jesus, JAS, Bastos, MS, Nunes, AS, Oliveira Júnior, GM, Nascimento, CS, Barbosa, LT, Brito, CO, Gasparino, E and Del Vesco, AP 2019. Antioxidant activity and duodenum transporter gene expression in quail fed citric acid. South African Society for Animal Science 49, 636643.CrossRefGoogle Scholar
Santos, MM, Peixoto, AR, Pessoa, ES, Nepa, HBS, Paz, CD and Souza, AVV 2014. Estudos dos constituintes químicos e atividade antibacteriana do óleo essencial de Lippia gracilis a Xanthomonas campestris pv. viticola“in vitro. Summa Phytopathology 40, 277280.CrossRefGoogle Scholar
Santurio, DF, Costa, MM, Maboni, G, Cavalheiro, CP, , MF, Pozzo, MD, Alves, SH and Fries, LLM 2011. Atividade antimicrobiana de óleos essenciais de condimentos frente a amostras de Escherichia coli isoladas de aves e bovinos. Ciência Rural 63, 12291232.Google Scholar
Santurio, JM, Santurio, DF, Pozzatti, P, Moraes, C, Franchin, PR and Alves, SH 2007. Atividade antimicrobiana dos óleos essenciais de orégano, tomilho e canela frente a sorovares de Salmonella entérica de origem avícola. Ciência Rural 37, 803808.CrossRefGoogle Scholar
Sarrazin, SLF, Oliveira, RB, Barata, LES and Mourao, RHV 2012. Chemical composition and antimicrobial activity of the essential oil of Lippia grandis Schauer (Verbenaceae) from the western Amazon. Food Chemistry 134, 14741478.CrossRefGoogle ScholarPubMed
Scholtz, N, Halle, I, Flachowsky, G and Sauerwein, H 2009. Serum chemistry reference values in adult Japanese quail (Coturnix coturnix japonica) including sex-related differences. Poultry Science 88, 11861190.CrossRefGoogle ScholarPubMed
Silva, MA, Pessotti, BMS, Zanini, SF, Colnago, GL, Rodrigues, MRA, Nunes, LC, Zanini, MS and Martins, IVF 2009. Intestinal mucosa structure of broiler chickens infected experimentally with Eimeria tenella and treated with essential oil of oregano. Ciência Rural 39, 14711477.CrossRefGoogle Scholar
Sousa, DR, Zanini, SF, Mussi, JMS, Martins, JD, Fantuzzi, E and Zanini, MS 2013. Óleo de aroeira vermelha e de suplementação de vitamina E em substituição aos promotores de crescimento sobre a microbiota intestinal de frangos de corte. Ciência Rural 43, 22282233.CrossRefGoogle Scholar
Suzuki, OH, Flemming, JS and Silva, MET 2008. Uso de óleos essenciais na alimentação de leitões. Revista Acadêmica: Ciências Agrárias e Ambientais.Google Scholar
Traesel, CK, Lopes, STA, Wolkmer, P, Schmidt, C, Santurio, JM and Alves, SH 2011a. Óleos essenciais como substituintes de antibióticos promotores de crescimento em frangos de corte: perfil de soroproteínas e peroxidação lipídica. Ciência Rural 41, 278284.CrossRefGoogle Scholar
Traesel, CK, Wolkmer, P, Schmidt, C, Silva, CB, Paim, FC, Rosa, AP, Alves, SH, Santurio, JM and Lopes, STA 2011b. Serum biochemical profile and performance of broiler chickens fed diets containing essential oils and pepper. Comparative Clinical Pathology 20, 453460.CrossRefGoogle Scholar
Windisch, W, Schedle, K, Plitzner, C and Kroismayr, A 2008. User of phytogenic products as feed additives for swine and poultry. Journal of Animal Science 86, 140148.CrossRefGoogle Scholar
Supplementary material: File

Rocha et al. Supplementary Materials

Rocha et al. Supplementary Materials

Download Rocha et al. Supplementary Materials(File)
File 25.7 KB