Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T19:48:21.727Z Has data issue: false hasContentIssue false

The herd, a source of flexibility for livestock farming systems faced with uncertainties?

Published online by Cambridge University Press:  31 March 2011

M. O. Nozières*
Affiliation:
INRA, UMR Systèmes d’élevage méditerranéens et tropicaux, SELMET, 34060 Montpellier, France
C. H. Moulin
Affiliation:
Montpellier SupAgro, UMR Systèmes d’élevage méditerranéens et tropicaux, SELMET, 34060 Montpellier, France
B. Dedieu
Affiliation:
INRA, UMR 1273 Mutations des activités, des espaces et des formes d'organisation dans les territoires ruraux, METAFORT, 63122 Saint Genès Champanelle, France
Get access

Abstract

‘Adapt to endure’ has become a necessity in agriculture, but the means to do so remain largely undefined. The aim of this literature review is to analyse how the herd contributes to a livestock farming system's capacity to adapt to a changing world and evolve when the future is uncertain. We identify six categories of elements linked to the herd, called ‘sources of flexibility’, that are used to manage perturbation. The first three are: using the animal's adaptive capacities, using the diversity of species and breeds and combining the diversity of animal products. The last three are: organising the mobility of animals and livestock farmers, juggling the herd numbers and mastering the balance between productivity and herd survival. These sources of flexibility are described in the literature by studying the different ways in which they are used. For example, the ‘juggle herd numbers’ source is described by volume, categories of animals, type of transfer, such as births, purchases or gifts, and timing of use, especially linked to the timing of the perturbation. Identified studies also compare or rank sources and analyse the connections between them. The flexibility framework (management science) is used for this analysis according to the levels of organisation of a livestock farming system: a strategic level referring to long-term options and to the capacity to modify the system structure, and an operational level referring to adjustment decisions during the productive cycle, the presence or absence of intervention by the livestock farmer, and the time scales involved. We conclude that the decision to use one or another source (in terms of modalities, alternatives, scheduling and combinations) is made according to the production objectives, the structural means, the type/frequency/intensity of perturbations and the context/environment. Consequently, the flexibility of a livestock farming system cannot be assessed in absolute terms. Enhancing flexibility needs management of all elements and scales involved (and not only the herd), and requires diversity to be organised at different scales.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alary, V, El Mourid, M 2007. Changement réel et changement induit: Décalage ou perpétuelle recherche pour les zones arides d'Afrique du Nord. Cahiers Agricultures 16, 330337.Google Scholar
Andrieu, N, Coléno, F, Duru, M 2008. L'organisation du système fourrager source de flexibilité face aux variations climatiques. In L’élevage en mouvement – flexibilité et adaptation des exploitations d'herbivores (ed. B Dedieu, B Leclerc, CH Moulin and M Tichit), pp. 95110. Quae, Versailles, France.Google Scholar
Angassa, A, Oba, G 2007. Relating long-term rainfall variability to cattle population dynamics in communal rangelands and a government ranch in southern Ethiopia. Agricultural Systems 94, 715725.CrossRefGoogle Scholar
Arthur, WB 1994. Increasing returns and path dependence in the economy. University of Michigan Press, USA.CrossRefGoogle Scholar
Astigarraga, L, Chia, E, Ingrand, S 2008. Production flexibility in extensive beef farming systems in the Limousin region. In Empowerment of the rural actors: a renewal of farming systems perspectives (ed. S Zasser–Bedoya and B Dedieu), pp. 385392. IFSA, Clermont-Ferrand, France.Google Scholar
Aubron, C, Brunschwig, G 2008. Practices consistency in dairy farms of the dry Andes: analysis in a Peruvian peasants community. Livestock Research for Rural Development 20(30).Google Scholar
Baker, LE, Hoffman, MT 2006. Managing variability: herding strategies in communal rangelands of Semiarid Namaqualand. South Africa Human Ecology 34, 765784.CrossRefGoogle Scholar
Barton, D, Meadows, M, Morton, J 2001. Drought losses, pastoral saving and banking: a review. In NRI Project L0114, Natural Resources Institute, 20pp.Google Scholar
Blackburn, HD, Cartwright, TC 1987a. Description and validation of the Texas A&M sheep simulation model. Journal of Animal Science 65, 373386.CrossRefGoogle Scholar
Blackburn, HD, Cartwright, TC 1987b. Simulated genotype, environment and interaction effects on performance characters of sheep. Journal of Animal Science 65, 387398.CrossRefGoogle Scholar
Blackburn, HD, Cartwright, TC 1987c. Simulated production and biological efficiency of sheep flocks in a shifting environment. Journal of Animal Science 65, 399408.CrossRefGoogle Scholar
Blanc, F, Bocquier, F, Agabriel, J, D'hour, P, Chilliard, Y 2006. Adaptive abilities of the females and sustainability of ruminant livestock systems. A review. Animal Research 55, 489510.CrossRefGoogle Scholar
Blench, R, Marriage, Z 1999. Drought and livestock in semi-arid Africa and southwest Asia. Working Paper 117, Overseas Development Institute, London, 138pp.Google Scholar
Boone, RB, Wang, G 2007. Cattle dynamics in African grazing systems under variable climates. Journal of Arid Environments 70, 495513.CrossRefGoogle Scholar
Bourbouze, A 2006. Systèmes d’élevage et production animale dans les steppes du nord de l'Afrique: une relecture de la société pastorale du Maghreb. Sécheresse 17, 3139.Google Scholar
Cabrera, VE, Hildebrand, PE, Jones, JW, Letson, D, de Vries, A 2006. An integrated North Florida dairy farm model to reduce environmental impacts under seasonal climate variability. Agriculture, Ecosystems & Environment 113, 8297.CrossRefGoogle Scholar
Cacho, OJ, Bywater, AC, Dillon, JL 1999. Assessment of production risk in grazing models. Agricultural Systems 60, 8798.CrossRefGoogle Scholar
Checkland, P 1985. From optimizing to learning: a development of systems thinking for the 1990s. Journal of the Operational Research Society 36, 757767.CrossRefGoogle Scholar
Chia, E 2008. La flexibilité relationnelle: rôle des réseaux, groupements et associations d’éleveurs. In L’élevage en mouvement – Flexibilité et adaptation des exploitations d'herbivores (ed. B Dedieu, B Leclerc, CH Moulin and M Tichit), pp. 135142. Quae, Versailles, France.Google Scholar
Chia, E, Marchesnay, M 2008. Un regard des sciences de gestion sur la flexibilité: enjeux et perspectives. In L’élevage en mouvement – Flexibilité et adaptation des exploitations d'herbivores (ed. B Dedieu, B Leclerc, CH Moulin and M Tichit), pp. 2336. Quae, Versailles, France.Google Scholar
Cialdella, N, Dedieu, B 2010. What action logics do family livestock farmers have to maintain their activity over the long term? In 9th European IFSA Symposium: Building sustainable rural future: the added value of systems approaches in times of change and uncertainty, pp. 1244–1254. IFSA, Vienna, Austria.Google Scholar
Cohendet, P, Llerena, P 1999. Flexibilité et mode d'organisation. Revue française de gestion 123, 7279.Google Scholar
Cordier, J, Erhel, A, Pindard, A, Courleux, F 2008. La gestion des risques en agriculture de la théorie à la mise en oeuvre: éléments de réflexion pour l'action publique. Notes et Etudes Economiques 30, 3371.Google Scholar
Cossins, NJ, Upton, M 1988. The impact of climatic variation on the Borana pastoral system. Agricultural Systems 27, 117135.CrossRefGoogle Scholar
Cournut, E, Dedieu, B 2004. A discrete events simulation of flock dynamics: a management application to three lambings in two years. Animal Research 53, 383403.CrossRefGoogle Scholar
Darnhofer, I, Bellon, S, Dedieu, B, Milestad, R 2010. Adaptiveness to enhance the sustainability of farming systems. A review. Agronomy for Sustainable Development 30, 6781.CrossRefGoogle Scholar
De Vries, D, Leslie, PW, McCabe, JT 2006. Livestock acquisitions dynamics in nomadic pastoralist herd demography: a case study among Ngisonyoka Herders of South Turkana. Kenya Human Ecology 34, 125.CrossRefGoogle Scholar
Dedieu, B 2009. Qualification of the adaptive capacities of livestock farming systems. Revista Brasileira de Zootecnia 38, 397404.CrossRefGoogle Scholar
Dedieu, B, Ingrand, S 2010. Incertitude et adaptation: cadres théoriques et application à l'analyse de la dynamique des systèmes d’élevage. Productions Animales 23, 8190.CrossRefGoogle Scholar
Dedieu, B, Gibon, A, Roux, M 1991. Notations d’état corporel des brebis et diagnostic des systèmes d’élevage ovin. Etudes et Recherches INRA Département de Recherches sur les Systèmes Agraires et le Développement 22, 546.Google Scholar
Dedieu, B, Louault, F, Tournadre, H, Benoit, M 2008. Réponse de systèmes d’élevage innovants à la variabilité climatique: une expérimentation en production extensive en ovin viande intégrant des préoccupations environnementales. In L’élevage en mouvement – flexibilité et adaptation des exploitations d'herbivores (ed. B Dedieu, B Leclerc, CH Moulin and M Tichit), pp. 161178. Quae, Versailles, France.Google Scholar
Desta, S, Coppock, DL 2002. Cattle population dynamics in the Southern Ethiopian rangelands, 1980-97. Journal of Range Management 55, 439451.CrossRefGoogle Scholar
Diaz-Solis, H, Kothmann, MM, Grant, WE, De Luna-Villarreal, R 2006. Application of a simple ecological sustainability simulator (SESS) as a management tool in the semi-arid rangelands of northeastern Mexico. Agricultural Systems 88, 514527.CrossRefGoogle Scholar
Diaz-Solis, H, Grant, WE, Kothmann, MM, Teague, WR, Diaz-Garcia, JA 2009. Adaptive management of stocking rates to reduce effects of drought on cow-calf production systems in semi-arid rangelands. Agricultural Systems 100, 4350.CrossRefGoogle Scholar
Duru, M, Gibon, A, Osty, PL 1988. Pour une approche renouvelée du système fourrager. In Pour une agriculture diversifiée (ed M Jollivet), pp. 3548. L'Harmattan, Paris, France.Google Scholar
Eldin, M, Milleville, P 1989. Le risque en agriculture. ORSTOM, Paris.CrossRefGoogle Scholar
Fitzgerald, JB, Brereton, AJ, Holden, NM 2005. Assessment of regional variation in climate on the management of dairy cow systems in Ireland using a simulation model. Grass and Forage Science 60, 283296.CrossRefGoogle Scholar
Galvin, KA, Thornton, PK, Boone, RB, Sunderland, J 2004. Climate variability and impacts on east African livestock herders: the Maasai of Ngorongoro conservation area, Tanzania. African Journal of Range and Forage Science 21, 183189.CrossRefGoogle Scholar
Gibon, A, Duru, M 1987. Fonctionnement des systèmes d’élevage ovin pyrénéens et sensibilité au climat. In Agrométéorologie des régions de moyenne montagne. pp. 303316. INRA, Paris, Toulouse, France.Google Scholar
Gibon, A, Balent, G, Duru, M 1983. Ajustement entre besoins du troupeau et croissance de l'herbe. Pâtre 309, 7074.Google Scholar
Gibon, A, Sibbald, AR, Flamant, JC, Lhoste, P, Revilla, R, Rubino, R, Sorensen, JT 1999. Livestock farming systems research in Europe and its potential contribution for managing towards sustainability in livestock farming. Livestock Production Science 61, 121137.CrossRefGoogle Scholar
Gillard, P, Monypenny, R 1990. A decision support model to evaluate the effects of drought and stocking rate on beef cattle properties in Northern Australia. Agricultural Systems 34, 3752.CrossRefGoogle Scholar
Girard, N, Lasseur, J 1997. Stratégies d’élevage et maîtrise de la répartition temporelle de la production – exemples des élevages ovins allaitants en montagne méditerranéenne. Cahiers Agricultures 6, 115124.Google Scholar
Guimarães, VP, Tedeschi, LO, Rodrigues, MT 2009. Development of a mathematical model to study the impacts of production and management policies on the herd dynamics and profitability of dairy goats. Agricultural Systems 101, 186196.CrossRefGoogle Scholar
Gunderson, LH 2000. Ecological resilience in theory and practice. Annual Review of Ecology and Systematics 31, 425439.CrossRefGoogle Scholar
Hahn, BD, Richardson, FD, Hoffman, MT, Roberts, R, Todd, SW, Carrick, PJ 2005. A simulation model of long-term climate, livestock and vegetation interactions on communal rangelands in the semi-arid Succulent Karoo, Namaqualand, South Africa. Ecological Modelling 183, 211230.CrossRefGoogle Scholar
Hardaker, JB, Huirne, RBM, Anderson, JR 1998. Coping with risk in agriculture, 1st edition. CAB Publishing, Wallingford, UK.Google Scholar
Hary, I 2004. Assessing the effect of controlled seasonal breeding on steady-state productivity of pastoral goat herds in Northern Kenya. Agricultural Systems 81, 153175.CrossRefGoogle Scholar
Hildebrand, PE, Wilsey, DS 2008. Understanding farmer decision making in the face of rapid change in Columbia and Suwannee Counties, Florida. In 8th European IFSA Symposium: Empowerment of the Rural Actors: a Renewal of Farming Systems Perspectives (ed. B Dedieu and S Zasser-Bedoya), pp. 353360. IFSA, Clermont-Ferrand, France.Google Scholar
Holling, CS 2001. Understanding the complexity of economic, ecological and social systems. Ecosystems 4, 390405.CrossRefGoogle Scholar
Homann, S, Rischkowsky, B, Steinbach, J, Kirk, M, Mathias, E 2008. Towards endogenous livestock development: Borana pastoralists’ responses to environmental and institutional changes. Human Ecology 36, 503520.CrossRefGoogle Scholar
Hovi, M, Sundrum, A, Thamsborg, SM 2003. Animal health and welfare in organic livestock production in Europe: current state and future challenges. Livestock Production Science 80, 4153.CrossRefGoogle Scholar
Hubert, B, Girard, N, Lasseur, J, Bellon, S 1993. Les systèmes d’élevage préalpins – Derrière les pratiques des conceptions modélisables. Etudes et Recherches sur les Systèmes Agraires et le Développement 27, 351385.Google Scholar
Illius, AW, Derry, JF, Gordon, IJ 1998. Evaluation of strategies for tracking climatic variation in semi-arid grazing systems. Agricultural Systems 57, 381398.CrossRefGoogle Scholar
Illius, AW, Derry, JF, Gordon, IJ 2000. Corrigendum – evaluation of strategies for tracking climatic variation in semi-arid grazing systems. Agricultural Systems 63, 7374.CrossRefGoogle Scholar
Ingrand, S, Dedieu, B, Chassaing, C, Josien, E 1993. Etude des pratiques d'allotement dans les exploitations d’élevage. Proposition d'une méthode en élevage bovin extensif. Etudes et recherches sur les systèmes agraires et développement, 53–71pp.Google Scholar
Ingrand, S, Astigarraga, L, Chia, E, David, C, Coquil, X, Fiorelli, JL 2009. Développer les propriétés de flexibilité des systèmes de production agricole en situation d'incertitude: pour une durabilité qui dure… In 13èmes Journées de la Recherche Cunicole, Le Mans, France.Google Scholar
Jagtap, SS, Jones, JW, Hildebrand, P, Letson, D, O'Brien, JJ, Podestá, G, Zierden, D, Zazueta, F 2002. Responding to stakeholder's demands for climate information: from research to applications in Florida. Agricultural Systems 74, 415430.CrossRefGoogle Scholar
Kingwell, R, Morrison, DA, Bathgate, AD 1992. The effect of climatic risk on dryland farm management. Agricultural Systems 39, 153175.CrossRefGoogle Scholar
Kobayashi, M, Howitt, RE, Jarvis, LS, Laca, EA 2007. Stochastic rangeland use under capital constraints. American Journal of Agricultural Economics 89, 805817.CrossRefGoogle Scholar
Krätli, S 2008. Cattle breeding, complexity and mobility in a structurally unpredictable environment: the Wodaabe herders of Niger. Nomadic People 12, 1141.CrossRefGoogle Scholar
Kuznar, LA 1991. Mathematical models of pastoral production and herd composition in traditionnal Andean herds. Journal of Quantitative Anthropology 3, 117.Google Scholar
Landais, E 1992. Principes de modélisation des systèmes d’élevage – approches graphiques. Les Cahiers de la Recherche Développement 32, 8295.Google Scholar
Lehenbauer, TW, Oltjen, JW 1998. Dairy cow culling strategies: making economical culling decisions. Journal Dairy Science 81, 264271.CrossRefGoogle ScholarPubMed
Lemery, B, Ingrand, S, Dedieu, B, Dégrange, B 2005. Agir en situation d'incertitude: le cas des éleveurs de bovins allaitants. Economie Rurale 288, 5769.CrossRefGoogle Scholar
Lev, L, Campbell, DJ 1987. The temporal dimension in farming systems research: the importance of maintaining flexibility under conditions of uncertainty. Journal of Rural Studies 3, 123132.CrossRefGoogle Scholar
Lopez-Ridaura, S, Van Keulen, H, Van Ittersum, MK, Leffelaar, PA 2005. Multiscale methodological framework to derive criteria and indicators for sustainability evaluation of peasant natural resource management systems. Environment, Development and Sustainability 7, 5169.CrossRefGoogle Scholar
Louhichi, K, Alary, V, Grimaud, P 2004. A dynamic model to analyse the bio-technical and socio-economic interactions in dairy farming systems on the Réunion Island. Animal Research 53, 363382.CrossRefGoogle Scholar
Lybbert, TJ, Barrett, CB, Desta, S, Coppock, DL 2004. Stochastic wealth dynamics and risk management among a poor population. The Economic Journal 114, 750777.CrossRefGoogle Scholar
Mace, R 1990. Pastoralist herd compositions in unpredictable environments: a comparison of model predictions and data from camel-keeping groups. Agricultural Systems 33, 111.CrossRefGoogle Scholar
Mace, R, Houston, A 1989. Pastoralist strategies for survival in unpredictable environments: a model of herd composition that maximises household viability. Agricultural Systems 31, 185204.CrossRefGoogle Scholar
Mahoney, J 2000. Path dependence in historical sociology. Theory and Society 29, 507545.CrossRefGoogle Scholar
McCarthy, N, Dutilly-Diané, C, Drabo, B, Kamara, AB, Vanderlinden, JP 2004. Managing resources in erratic environments: an analysis of pastoral systems in Burkina Faso, Niger and Ethiopia. Research Report 135, International Food Policy Research Institute, Washington, DC, USA, 98pp.Google Scholar
McCullough, DA, DeLorenzo, MA 1996. Effects of price and management level on optimal replacement and insemination decision. Journal of Dairy Science 79, 242253.CrossRefGoogle Scholar
McManus, C, Prescott, E, Paludo, GR, Bianchini, E, Louvandini, H, Mariante, AS 2009. Heat tolerance in naturalized Brazilian cattle breeds. Livestock Science 120, 256264.CrossRefGoogle Scholar
McPeak, J 2006. Confronting the risk of asset loss: what role do livestock transfers in northern Kenya play? Journal of Development Economics 81, 415437.CrossRefGoogle Scholar
McPeak, JG, Barrett, CB 2001. Differential risk exposure and stochastic poverty traps among east African pastoralists. American Journal of Agricultural Economics 83, 674679.CrossRefGoogle Scholar
Milestad, R, Darnhofer, I 2003. Building farm resilience: the prospects and challenges of organic farming. Journal of Sustainable Agriculture 22, 8197.CrossRefGoogle Scholar
Molenat, G, Jarrige, R 1979. Utilisation par les ruminants des pâturages d'altitude et parcours méditerranéens. In Journées du Grenier de Theix. INRA Theix, Saint-Genès-Champanelle, France.Google Scholar
Morales Grosskopf, H 2007. L’évaluation des conséquences de décisions stratégiques en élevage extensif en Uruguay. Une approche par les systèmes multi-agents. PhD, AgroParisTech.Google Scholar
Morton, J, Barton, D 2002. Destocking as a drought-mitigation strategy: clarifying rationales and answering critiques. Disasters 26, 213228.CrossRefGoogle ScholarPubMed
Mosnier, C 2009. Adaptation des élevages de bovins allaitants aux aléas de prix et de climat: Approches par modélisation. PhD, AgroParisTech.Google Scholar
Moulin, CH 1993. Le concept de fonctionnement de troupeau. Diversité des pratiques et variabilité des performances animales dans un système agropastoral sahélien. Etudes et Recherches sur les Systèmes Agraires et le Développement 27, 7394.Google Scholar
Moulin, CH 2000. Pratiques de gestion du troupeau en élevage sahélien: cas des brebis de réforme. In 5th Livestock Farming Systems Symposium, Integrating Animal Science Advances in the Search of Sustainability, 19–20 August 1999, Posieux, Switzerland, EAAP Publication no. 97, Wageningen Pers, Wageninen, 254–257pp.Google Scholar
Moulin, CH, Ingrand, S, Lasseur, J, Madelrieux, S, Napoléone, M, Pluvinage, J, Thénard, V 2008. Comprendre et analyser les changements d'organisation et de conduite de l’élevage dans un ensemble d'exploitations: propositions méthodologiques. In L’élevage en mouvement – Flexibilité et adaptation des exploitations d'herbivores (ed. B Dedieu, B Leclerc, CH Moulin and M Tichit), pp. 181196. Quae, Versailles, France.Google Scholar
Müller, B, Frank, K, Wissel, C 2007. Relevance of rest periods in non-equilibrium rangeland systems – a modelling analysis. Agricultural Systems 92, 295317.CrossRefGoogle Scholar
Nicholson, CF, Lee, DR, Boisvert, RN, Blake, RW, Urbina, CI 1994. An optimization model of the dual purpose cattle production system in the humid lowlands of Venezuala. Agricultural Systems 46, 311334.CrossRefGoogle Scholar
Nienaber, JA, Hahn, GLR 1999. Quantifying livestock responses for heat stress management: a review. International Journal of Biometeorology 42, 183188.CrossRefGoogle ScholarPubMed
Oba, G 2001. The effect of multiple droughts on cattle in Obbu, Northern Kenya. Journal of Arid Environments 49, 375386.CrossRefGoogle Scholar
Olson, K, Mikesell, CL 1988. The range stocking decision and stochastic forage production. Department of Agricultural and Applied Ecnomics, University of Minesota, USA, 18pp.Google Scholar
Olson, K, George, M, Menke, J, Murphy, A, Van Horne, J, Lohr, L 1987. Incorporating weather variation into California rangeland stocking rate decisions. Department of Agricultural and Applied Economics, University of Minesota, USA, 26pp.Google Scholar
Papy, F, Attonaty, JM, Laporte, C, Soler, LG 1988. Work organization simulation as a basis for farm management advice (equipment and manpower, levels against climatic variability). Agricultural Systems 27, 295314.CrossRefGoogle Scholar
Parsons, DJ, Armstrong, AC, Turnpenny, JR, Matthews, AM, Cooper, K, Clarck, JA 2001. Integrated models of livestock systems for climate change studies. 1. Grazing systems. Global Change Biology 7, 93112.CrossRefGoogle Scholar
Pasin, F, Tchokogué, A 2001. La flexibilité multiforme des entreprises de transport. Revue française de gestion 132, 2331.Google Scholar
Perochon, L, Ingrand, S, Force, C, Dedieu, B, Blanc, F, Agabriel, J 2009. SIMBAL: a herd simulator for beef cattle. 7th Workshop International: Modelling Nutrient Digestion and Utilization in Farm Animals, AgroParisTech Paris, September 10th–12th, 2009.Google Scholar
Puillet, L, Sauvant, D, Tichit, M 2008. In herd diversity of lifetime performances: a key for the sustainability of livestock farming systems based on grassland. Poster at the 21st International Grassland Congress and 8th International Rangeland Congress, Hohhot, Inner Mongolia, China, June 29 to July 5, 2008.Google Scholar
Reidsma, P, Ewert, F, Lansink, AO, Leemans, R 2010. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. European Journal of Agronomy 32, 91102.CrossRefGoogle Scholar
Ridier, A, Jacquet, F 2002. Decoupling direct payments and the dynamics of decisions under price risk in cattle farms. Journal of Agricultural Economics 53, 549565.CrossRefGoogle Scholar
Ridier, A, Mignot, P, Colson, F, Jacquet, F 2001. Adapation aux réformes de la PAC et comportement face au risque. In Recherches pour et sur le Développement Territorial (ed. Délégation à l'Agriculture, au Développement, à la Prospective), pp. 141155. INRA, Montpellier, France.Google Scholar
Romera, AJ, Burges, JC, Morris, ST, Hodgson, J, Woodward, SJR 2008. Modelling spring and autumn calving systems in beef herds of the Salado region of Argentina. Livestock Science 115, 6272.CrossRefGoogle Scholar
Santucci, P 1991. Le troupeau et ses propriétés régulatrices, bases de l’élevage extensif. PhD, Université de Montpellier II.Google Scholar
Sauvant, D, Martin, O 2010. Robustesse, rusticité, flexibilité, plasticité … les nouveaux critères de la qualité des animaux et des systèmes d’élevage: définition systémique et biologique des différents concepts. Productions Animales 23, 510.CrossRefGoogle Scholar
Sen, A 1992. Repenser l'inégalité. Le Seuil, Paris, France.Google Scholar
Sieff, D 1999. The effects of wealth on livestock dynamics among the Datoga pastoralists of Tanzania. Agricultural Systems 59, 125.CrossRefGoogle Scholar
Smit, B, Skinner, MW 2002. Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change 7, 85114.CrossRefGoogle Scholar
Stafford Smith, M, Foran, B 1992. An approach of assessing the economic risk of different drought management tactics on a South Australian Pastoral Sheep Station. Agricultural Systems 39, 83105.CrossRefGoogle Scholar
Steinfeld, H, Mäki-Hokkonen, J 1995. A classification of livestock production systems. World Animal Review 84–85, 8394.Google Scholar
Svotwa, E, Hamudikuwanda, H, Makarau, A 2007. Influence of climate and weather on cattle production semi-arid communal areas of Zimbabwe. Electronic Journal of Environmental, Agricultural and Food Chemistry 6, 18381850.Google Scholar
Tarondeau, JC 1999. La flexibilité dans les entreprises. PUF, Paris, France.Google Scholar
Theriez, M, Petit, M, Martin-Rosset, W 1994. Caractéristiques de la conduite des troupeaux allaitants en zones difficiles. Annales de Zootechnie 43, 3347.CrossRefGoogle Scholar
Thornton, PK, Van de Steeg, J, Notenbaert, A, Herrero, M 2010. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agricultural Systems 103, 7382.CrossRefGoogle Scholar
Thornton, PK, Fawcett, RH, Galvin, KA, Boone, RB, Hudson, JW, Vogel, CH 2004. Evaluating management options that use climate forecasts: modelling livestock production systems in the semi-arid zone of South Africa. Climate Research 26, 3342.CrossRefGoogle Scholar
Thornton, PK, Boone, RB, Galvin, KA, BurnSilver, SB, Waithaka, MM, Kuyiah, J, Karanja, S, Gonzalez-Estrada, E, Herrero, M 2007. Coping strategies in livestock-dependent households in east and Southern Africa: a synthesis of four case studies. Human Ecology 35, 461476.CrossRefGoogle Scholar
Tichit, M, Hubert, B, Doyen, L, Genin, D 2004a. A viability model to assess the sustainability of mixed herds under climatic uncertainty. Animal Research 53, 405417.CrossRefGoogle Scholar
Tichit, M, Ingrand, S, Moulin, CH, Cournut, S, Lasseur, J, Dedieu, B 2004b. Analyser la diversité des trajectoires productives des femelles reproductrices: intérêt pour modéliser le fonctionnement du troupeau en élevage allaitant. INRA Productions Animales 17, 123132.CrossRefGoogle Scholar
Toulmin, C 1999. Le suivi pendant la sécheresse: réduction et reconstitution du cheptel. In Nouvelles orientations du développement pastoral en Afrique (ed. I Scoones), pp. 177208. CTA-KARTHALA, Paris, France and Wageningen, The Netherlands.Google Scholar
Vallerand, F 1988. La rusticité – Niveaux et méthodes d'approche en milieu réel. Conference at De la touffe d'herbe au paysage, Séminaire Viens (ed. B Hubert and N Girault), pp. 85101. INRA, Paris, France.Google Scholar
Viglizzo, EF 1994. The response of low-input agricultural systems to environmental variability. A theoretical approach. Agricultural Systems 44, 117.CrossRefGoogle Scholar
Von Borell, E, Sørensen, JT 2004. Organic livestock production in Europe: aims, rules and trends with special emphasis on animal health and welfare. Livestock Production Science 90, 39.CrossRefGoogle Scholar