Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T03:39:32.175Z Has data issue: false hasContentIssue false

Genetic parameters of traits associated with the growth curve in Segureña sheep

Published online by Cambridge University Press:  23 December 2015

T. M. Lupi*
Affiliation:
Scientific Technical Unit of Natural Resources and Sustainable Development, Escola Superior Agrária, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
J. M. León
Affiliation:
Centro Agropecuario Diputación de Córdoba, 14071-Córdoba, Spain
S. Nogales
Affiliation:
Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, 14071 Córdoba, Spain
C. Barba
Affiliation:
Departamento de Producción Animal, Universidad de Córdoba, Campus Universitario de Rabanales, 14071 Córdoba, Spain
J. V. Delgado
Affiliation:
Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, 14071 Córdoba, Spain
*
Get access

Abstract

This paper studies the genetic importance of growth curve parameters and their relevance as selection criteria in breeding programmes of Segureño sheep. Logistic and Verhulst growth functions were chosen for their best fit to BW/age in this breed; the first showed the best general fit and the second the best individual fit. Live weights of 41 330 individuals from the historical archives of the National Association of Segureña Sheep Breeders were used in the analysis. The progeny of 1464 rams and 27 048 ewes were used to study the genetic and phenotypic parameters of growth curve parameters and derived traits. Reproductive management in the population consists in controlled natural mating inside every herd, with a minimum of 15% of the females fertilized by artificial insemination with fresh semen; with the purpose being the herd genetic connections, all herd genealogies are screened with DNA markers. Estimates of growth curve parameters from birth to 80 days were obtained for each individual and each function by the non-linear regression procedure using IBM SPSS statistics (version 21) with the Levenberg–Marquart estimation method. (Co)variance components and genetic parameters were estimated by using the REML/Animal model methodology. The heritability of mature weight was estimated as 0.41±0.042 and 0.38±0.021 with the logistic and Verhulst models, respectively, and the heritability of other parameters ranged from 0.41 to 0.62 and 0.37 to 0.61, with the models, respectively. A negative genetic correlation between mature weight and rate of maturing was found.

Type
Research Article
Copyright
© The Animal Consortium 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abegaz, S, Vanwyk, JB and Jacobus, JJ 2010. Estimation of genetic and phenotypic parameters of growth curve and their relationship with early growth and productivity in Horro sheep. Archiv Tierzucht 53, 8594.Google Scholar
Bathaei, SS and Leroy, PL 1998. Genetic and phenotypic aspects of the growth curve characteristics in Mehraban Iranian fat-tailed sheep. Small Ruminant Research 29, 261269.Google Scholar
Blasco, A 1999. La descripción del crecimiento. Informe técnico ocasional No. 6, Departamento de ciencia animal, Universidad Politécnica de Valencia, 46022 Valencia, Spain.Google Scholar
Boldman, KG, Kriese, LA, Van Vleck, LD, Van Tassell, CP and Kachman, SD 1993. A manual for use of MTDFREML. A set of programs to obtain estimates of variances and covariances [DRAFT]. US Department of Agriculture, Agricultural Research Service, Clay Center, NE, USA.Google Scholar
Brown, JE, Fitzhugh, HA and Cartwright, TC 1976. A comparison of nonlinear models for describing weight-age relationships in cattle. Journal of Animal Science 42, 810818.Google Scholar
Canaza-Cayo, AW, Huanca, T, Gutiérrez, JP and Beltrán, PA 2015. Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research 130, 8189.Google Scholar
Carolino, RNP and Gama, LT 1993. Análise do crescimento corporal nas espécies pecuárias. Veterinária Técnica Ano 3n° 2, 1421.Google Scholar
Daskiran, I, Koncagul, S and Bingol, M 2010. Growth characteristics of indigenous Norduz female and male lambs. Journal of Agricultural Sciences 16, 6269.Google Scholar
Echeverri, AML, Bergmann, JAG, Toral, FLB, Osorio, JP, Carmo, AS, Mendonça, LF, Moustacas, VS and Henry, M 2013. Use of nonlinear models for describing scrotal circumference growth in Guzerat bulls raised under grazing conditions. Theriogenology 79, 751759.Google Scholar
Fitzhugh, HA and Taylor, SCS 1971. Genetic analysis of degree of maturity. Journal of Animal Science 33, 717725.Google Scholar
Goyache, FM 2005. Crecimientos, consumos y medidas corporales. In Estandarización de las metodologías para evaluar la calidad del producto (animal vivo, canal, carne y grasa) en los rumiantes (ed. V Cañeque and C Sañudo), Retrieved May 19, 2015, from https://www.researchgate.net/publication/265238020_1_Crecimientos_consumos_y_medidas_corporales. INIA, Madrid, Spain.Google Scholar
Hossein-Zadeh, NG 2015. Estimation of genetic relationships between growth curve parameters in Guilan sheep. Journal of Animal Science and Technology 57, 19.CrossRefGoogle Scholar
Lambe, NR, Navajas, EA, Simm, G and Bünger, L 2006. A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds. Journal of Animal Science 84, 26422654.Google Scholar
López, S, France, J, Gerrits, WJ, Dhanoa, MS, Humphries, DJ and Dijkstra, J 2000. A generalized Michaelis-Menten equation for the analysis of growth. Journal of Animal Science 78, 18161828.Google Scholar
Lewis, RM and Brotherstone, D 2002. A genetic evaluation of growth in sheep using random regression techniques. Animal Science 74, 6370.Google Scholar
Lewis, RM, Emmans, GC, Dingwall, WS and Simm, G 2002. A description of the growth of sheep and its genetic analysis. Animal Science 74, 5162.CrossRefGoogle Scholar
Lupi, TM, Nogales, S, León, JM, Barba, C and Delgado, JV 2015. Characterization of commercial and biological growth curves in the Segureña sheep breed. Animal 9, 13411348.CrossRefGoogle ScholarPubMed
McManus, C, Evangelista, C, Fernandes, LAC, Miranda, RM, Moreno-Bernal, FE and Santos, NR 2003. Curvas de Crescimento de Ovinos Bergamácia Criados no Distrito Federal. Revista Brasileira de Zootecnia 32, 12071212.Google Scholar
Mekuriaw, S and Haile, A 2014. Genetic parameter estimates for growth and reproductive trait of sheep for genetic improvement and designing breeding program in ethiopia: a review. Open Access Library Journal, e589. Retrieved May 19, 2015, from http://dx.doi.org/10.4236/oalib.1100589 Google Scholar
Méndez-Gomez, AC, López-Ordaz, R, Peralta-Laison, M, Ulloa-Arvizu, R, Pedraza-Villagómez, P, Ruiz-López, J, Berruecos-Villalobos, JM and Vásquez-Peláez, CG 2014. Estimación de heredabilidad de la curva de crecimiento en el borrego de raza Chiapas en México. Animal Genetic Resources 54, 8591.Google Scholar
Tariq, MM, Iqbal, F, Eyduran, E, Bajwa, MA, Huma, Z and Waheed, A 2013. Comparison of non-linear functions to describe the growth in Mengali sheep breed of Balochistan. Pakistan Journal of Zoology 45, 661665.Google Scholar
Supplementary material: File

Lupi supplementary material S1

Supplementary Table

Download Lupi supplementary material S1(File)
File 10.9 KB